

अनुक्रमणिकां....

संरक्षक

डॉ. राज कुमार निदेशक व अध्यक्ष, राकास

सलाहकार

विंग कमांडर _(से.नि.) विभास सिंह गुप्ता नियंत्रक

मुख्य संपादक

श्री विनोद एम बोथले सह निदेशक

संपादक

श्रीमती मीनाक्षी सक्सेना

संपादक मंडल

डॉ. एन. अपर्णा श्रीमती भावना सहाय श्रीमती जया सक्सेना श्री घेटिया सत्येशकुमार जी. श्री ओझा अनिल कुमार श्री रामराज रेड्डी

आवरण एवं पत्रिका डिज़ाइन

श्री रामराज रेड्डी

आवरण पृष्ठ में सिडनी शहर का उपग्रह चित्र एवं पार्श्व पृष्ठ में मास्टर यशमित (सुपुत्र- श्रीमती शिवम त्रिवेदी) की चित्रकारी है।

राष्ट्रीय सुदूर संवेदन केंद्र

भारतीय अंतरिक्ष अनुसंधान संगठन अंतरिक्ष विभाग, भारत सरकार बालानगर, हैदराबाद-500037

विषय	पृष्ठ सं
◆ आमुख	3
• संदेश	4
• संपादकीय	5
1. टीका और टीकाकरण	6
2. ग्राम पंचायत स्थानिक विकास योजना	15
3. सुवाह्य एवं पैनोरमिक सोलर कुकर	17
4. इसरो भुवन में भारत के भौगोलिक संकेतों का जियो पोर्टल	19
5. त्वरित संदेश प्रेषण एवं नई डेटा गोपनीयता नीति	23
6. कुंभ उत्सव के दौरान इलाहाबाद क्षेत्र (प्रयाग) में गंगा नदी के	
कुछ हिस्सों में जल आविलता का आकलन	30
7. गूगल अर्थ इंजन कोड एडिटर - चित्र संसाधन उपकरण	34
8. भू-स्थानिक तकनीकों द्वारा बेंगलुरु शहर के वनस्पति आवरण का	
आकलन	36
9. खनन क्षेत्र के आसपास के पर्यावरणीय प्रतिरूपण हेतु प्रणाली	
गतिकी आधारित अध्ययन	39
10. हाइब्रिड पोल एवं प्राप्त स्यूडो-क्वाड पोल आंकड़ों से चंद्रमा की	
सतह के लक्षणों के लिए पोलारीमेट्रिक प्राचलों का आकलन	43
11. बृहत ब्रह्माण्ड में अनंत आकाशगंगाएं	47
12. लीला (LILA)	51
13. नैनो प्रौद्योगिकी	54
14. कार्टोसैट –3	57
15. चमोली जिला उत्तराखंड की त्रासदी	60

*प्रकाशित सामगी में व्यक्त विचार लेखकों के अपने हैं, आवश्यक नहीं कि उनसे संपादक मंडल की सहमित हो। संवाद के प्रकाशन में संपादक मंडल के साथ-साथ एनआरएससी की मुद्रण सुविधा और एनडीसी का भी विशेष योगदान है। अतः संवाद, मुद्रण सुविधा एवं एनडीसी के प्रति आभारी है। पित्रका पूर्ण रूप से हिंदी अनुभाग द्वारा तैयार कर आंतरिक रूप से मुद्रित की गई है। यह पित्रका www.nrsc.gov.in एवं राजभाषा विभाग के ई-पित्रका पुस्तकालय में भी उपलब्ध है।

प्रलेख नियंत्रण शीट

1	सुरक्षा वर्गीकरण	अप्रतिबंधित					
2	वितरण	सीमित					
3	प्रलेख	क) अंक : 01 तिथि : 30/03/2021 -			- % 1, 44		
4	रिपोर्ट/ प्रलेख का प्रकार	एनआरएससी गृह पत्रिका (तकनीकी अंक)					
5	प्रलेख नियंत्रण संख्या	एनआरएससी-प्रशासनिक क्षेत्र एवं.सा.प्रशामार्च-2021 -टीआर-0001831-V1.0					
6	शीर्षक	संवाद					
7	परितुलन का विवरण	पृष्ठ 60		चेत्र 62		काएं 8	संदर्भ -
8	लेखक	संवाद का संपादक मंडल					
9	लेखकों का संबंध	एनआरएससी					
1.0	जांच प्रक्रिया	संकलित	सग	नीक्षा		अनुमोवि	रेत
10		संपादक मंडल	संप	गदक मंडल मुख्य संपादव		पादक	
11	उत्पत्ति इकाई	एनआरएससी					
12	प्रायोजक नाम एवं पता	एनआरएससी					
13	आरंभ करने की तिथि	जनवरी					
14	प्रकाशन की तिथि	30 मार्च 2021					
15	सारांश (कुंजी शब्दों के साथ) संवाद का यह तकनीकी अंक हर वर्ष इस उद्देश्य के साथ प्रकाशित किया जाता है कि एनआरएससी की ओर से विविध तकनीकी विषयों से संबंधित सामग्री राजभाषा हिन्दी में भी उपलब्ध हो तथा तकनीकी साहित्य का विकास हो।						

आशा है आप व आपके परिवारजन कोविड-19 से सुरिक्षित हैं। लगभग एक वर्ष के अंतराल में कोविड-19 ने हम सभी को विषम परिस्थितियों में भी अपने दैनिक कार्यों को सुगमता से करने के उन्नत तौर-तरीके सिखा दिए हैं। कोविड वैक्सीन के आने से कुछ राहत अवश्य मिली है लेकिन खतरा अभी भी टला नहीं है। अतः हमें सावधानी बरतते हुए देश की आर्थिक स्थिति के सुधार की दिशा में अनवरत कार्यरत रहना होगा। परिस्थितियां चाहें जो भी हो प्रगति पथ सदैव गतिशील रहना चाहिए और इस दिशा में हम सभी को मिलकर काम करना होगा। मुझे प्रसन्नता है कि इन कठिन परिस्थितियों में भी एनआरएससी की गतिविधियां सुचारू रूप से चलती रहीं। हम जितनी सजगता से तकनीकी क्षेत्रों को उन्नत करने के प्रयास करते हैं उतनी ही प्रतिबद्धता राजभाषा के प्रचार-

प्रसार एवं उसके उपयोग के लिए भी रखते हैं। वर्ष 2001 से लगातार प्रकाशित होने वाली संवाद कभी रूकी नहीं। आप सभी को इसका पिछला अंक डिजिटल रूप में पढ़ने को मिला ही होगा। अपने पाठकों की सुविधा के लिए हमने संवाद को मोबाइल फ्रैन्ड्ली भी बनाया। मुझे खुशी है कि इसके पिछले डिजिटल अंक को पाठकों ने बहुत सराहा। संवाद का यह तकनीकी अंक अपने पाठकों को हम पुनः डिजिटल रूप में प्रस्तुत कर रहे हैं।

आमतौर पर प्रत्येक तकनीक से जुड़ा साहित्य अंग्रेजी में ही देखने को मिलता है। यदा-कदा ही हिन्दी भाषा में लिखे हुए तकनीकी साहित्य से हम सम्मुख हो पाते हैं। संवाद के द्वारा हमारा यही प्रयास रहता है कि हम सुदूर संवेदन से जुड़ी विविध तकनीकों व उनके अनुप्रयोगों को अपने पाठकों तक राजभाषा (हिन्दी) में पहुंचा सकें और हिन्दी में तकनीकी साहित्य को समृद्ध बना सकें। एनआरएससी आंकड़ा अर्जन, अभिग्रहण, संसाधन एवं वितरण के कार्यों से जुड़ा है। इतना ही नहीं देश के चारों कोनों में स्थित हमारे क्षेत्रीय सुदूर संवेदन केन्द्र भी विविध परियोजनाओं में राज्य व राष्ट्रीय स्तर पर जन सेवा में अपनी कर्मठता दिखाते नजर आते हैं।

तकनीक के विकास के साथ-साथ उसे जन-जन तक पहुंचाना एवं उसके उपयोग के लिए उचित प्रशिक्षण देना भी अनिवार्य होता है। अतः हमारे जनसंपर्क एवं प्रशिक्षण कार्यक्रमों द्वारा सरकार के विभिन्न अधिकारियों एवं छात्रों को इस दिशा में प्रशिक्षित किया जाता है। किसी भी आपदा के समय हम त्वरित आंकड़े उपलब्ध कराते हैं ताकि समय पर जनता को राहत एवं बचाव उपलब्ध कराया जा सके या उन्हें पूर्व चेतावनी देते हुए जान-माल के नुकसान को कम किया जा सके। उत्पादों के बेहतर वितरण के लिए आईएमजीईओएस में समय-समय पर सुविधाओं का संवर्धन किया जाता है। कोविड की परिस्थितियों में भी आईएसओ 9001:2015 पुनर्प्रमाणन किया गया। एनआरएससी के सभी परिसरों के डिजिटलीकरण के लिए भी एनआईसी ई-ऑफिस एवं ई-फाइल समाधान लागू करने का कार्य किया जा रहा है।

संवाद की सफलता के लिए शुभकामनाओं के साथ...

(डॉ. राज कुमार्)

217 9×112

निदेशक एवं अध्यक्ष, राकास (एनआरएससी)

हर्ष का विषय है कि प्रत्येक वर्ष की भाँति इस वर्ष भी एनआरएससी गृह-पत्रिका 'संवाद' का तकनीकी अंक पाठकगणों के ज्ञानवर्धन एवं ज्ञान-अद्यतन हेतु तैयार है।

जैसा कि आप सभी को विदित है कि इस पत्रिका के पिछले तकनीकी अंक और वर्तमान अंक की अविध हम सभी के लिए चुनौतीपूर्ण रही है और हम सभी एक अभूतपूर्व परिस्थिति से गुज़र रहे हैं। किन्तु इन परिस्थितियों में भी कर्त्तव्य निर्वहन के प्रति सतत् समर्पित रहना, देश, समाज और संगठन के विकास के लिए नितांत आवश्यक है। इस प्रकार, 'संवाद' गृह-पत्रिका को नियत समय पर तैयार करके

प्रकाशित करवाना, हम सभी की राजभाषा हिंदी के प्रति अटूट निष्ठा और कर्त्तव्य परायणता को प्रकट करती है।

संवाद' पत्रिका के प्रस्तुत तकनीकी अंक में ज्ञान-विज्ञान, अंतिरक्ष प्रौद्योगिकी एवं संबद्ध विषयों के लेख निहित है, जो इसके तकनीकी स्वरूप को चिरत्रार्थ कर रहे है। संवाद के इस अंक हेतु जिन लेखक-लेखिकाओं ने अपनी सृजनात्मक रचनाएँ लिखकर भेजी हैं, वे सभी बधाई के पात्र हैं। इस प्रकार, आप सभी से यह अपेक्षा है कि भविष्य में भी आप इसी तरह संवाद को अपने ज्ञान-कोश से आभूषित करते रहेंगे और अपने सहकर्मियों को भी विषयत तकनीकी लेख लिखने हेतु प्रोत्साहित करेंगे।

संवाद पत्रिका, कर्मचारियों को अपनी लेखन शैली के माध्यम से अपने ज्ञान और विचारों को व्यक्त करने के लिए एक मंच प्रदान करती है; इस प्रकार यह पत्रिका सृजनशीलता का परिचायक बन चुकी है जिसके लिए इसके संपादन मंडल की भूरि-भूरि प्रशंसा करता हूँ और संवाद के उत्तरोत्तर एवं सतत् विकास की कामना करता हूँ। वास्तव में समयानुकूल विषयों का चयन, संपादन व प्रकाशन एक सराहनीय कार्य है।

आशा है कि संवाद की विभिन्न विषयों पर गहन एवं नवीन जानकारियों से युक्त रचनाओं से आप लाभान्वित होंगे जो निश्चित तौर पर आपकी विषय आधारित तकनीकी जानकारियों में इज़ाफा करने में सहायक सिद्ध होगी और कामना करता हूँ कि यह अंक भी पूर्व के अंकों की भाँति अपने उद्देश्य में सफल होगी।

समस्त शुभकामनाओं सहित,

(विंग कमाण्डर (से.नि.) विभास सिंह गुप्ता)

नियंत्रक, एनआरएससी

संपादकीय....

मुझे यह जानकर बेहद प्रसन्नता हुई कि हमारे पाठकों को संवाद का बीसवां अंक जो कि डिजिटल रूप में आपको सौंपा गया था काफी पसंद आया है। जिस तरह हम अपने मकान को घर बनाने के लिए उसे बड़ी आत्मीयता से संवारते हैं उसी तरह हम इस पत्रिका को अपने पाठकों के ज्ञानवर्धन व मनोरंजन के लिए बड़े चाव से सजाते हैं। यह पूर्ण रूप से तकनीकी अंक है जिसमें हमने अपने लेखकों की सृजनात्मकता और तकनीक के बीच भाषा के साथ तालमेल बनाने की कोशिश की है। बदलते समय के साथ हम भी संवाद के स्वरूप को बदलने की कोशिशों करते हैं तथा पाठकों से मिली प्रतिक्रियाओं से हमें इसे और अधिक उपयोगी बनाने में मदद मिलती है।

एनआरएससी का वर्चस्व केवल एक ही क्षेत्र तक सीमित नहीं है बल्कि देश भर में स्थित विविध क्षेत्रीय सुदूर संवेदन केन्द्र भी इसका गौरव बढ़ाते हैं। वहां पर चल रही परियोजनाओं में प्रयुक्त तकनीकों का संक्षिप्त रूप हमारे लेखकों द्वारा प्रस्तुत करने की कोशिश की गई है। संवाद का माध्यम राजभाषा हिन्दी इसलिए भी रखा गया है ताकि यह प्रौद्योगिकी के विविध उपयोग/अनुप्रयोग आम जनता तक उनकी भाषा में पहुंचा सके। संभवतः यह छात्रों के लिए संदर्भ सहायिका के रूप में काम करेगी।

संवाद के पक्ष में कोविड-19 के कारण उत्पन्न प्रतिकूल परिस्थितियों को भी हमने अनुकूलतः इस्तेमाल किया और इसके डिजिटल स्वरूप से पाठकों को परिचित कराया। पूरी तरह इन-हाउस प्रतिभा के उपयोग से तैयार यह पित्रका न्यूनतम व्यय के साथ आंतिरक स्रोतों से तैयार करने में हमें गर्व महसूस हो रहा है। यह मात्र पित्रका ही नहीं बिल्क मेरे लिए उस अबोध शिशु के समान है जो मेरी उंगली पकड़ कर दौड़ना चाहता है और मैं उसके इस लक्ष्य को अंजाम देने के लिए प्रतिबद्ध हूं। आप पित्रका को हमारी वेबसाइट तथा राजभाषा विभाग के ई-पित्रका पुस्तकालय में भी देख सकते हैं।

मैं सभी लेखकों को शुभकामनाएं देते हुए उनके प्रति आभार प्रकट करता हूं कि आप सभी ने जटिल प्रौद्योगिकी से जुड़े विषयों को सरल हिन्दी में प्रस्तुत करने का सफल प्रयास किया है।

शुभकामनाओं सहित.....

विमाद बोशिस

(विनोद एम. बोथले) सह-निदेशक, एनआरएससी एवं मुख्य संपादक, संवाद

टीका और टीकाकरण....

डॉ. राजश्री विनोद बोथले राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

मार्च 2020 से सारा विश्व कोरोना वायरस की महामारी से जूझ रहा है जिसके कारण कई लोगों की जान गई और आर्थिक – सामाजिक धक्का लगा। इस वायरस से बचने के लिए टीकों की सभी राह देख रहे हैं ताकि सामान्य जीवन फिर से बहाल हो सके। इतने महीनों की प्रतीक्षा के बाद भारत में 15 जनवरी से टीकाकरण कार्यक्रम का पहला चरण प्रारंभ हुआ। आइये जाने कि टीके क्या हैं, उनका विकास कैसे होता है और टीकाकरण क्या है? टीकाकरण टीका देने की वह प्रक्रिया है जिसके द्वारा प्रतिरक्षा प्रणाली को एक बीमारी से बचाने में मदद मिलती है। टीका एक जैविक सामग्री है जिसमें एक कमजोर, जीवित या मरा हुआ सूक्ष्मजीव या वायरस होता है। एक टीका वह सामग्री है जो व्यक्ति को एक विशेष संक्रामक रोग से लंडने के लिए सक्रिय अधिग्रहित प्रतिरक्षा प्रदान करती है। इक्कीसवीं शताब्दी से टीके अकृतिम रूप से बनाये जाने लगे हैं। टीके बनाने की प्रक्रिया में अक्सर कमजोर रूप सुक्ष्म जीवों, इसके विषाक्त पदार्थों. या इसकी सतह के प्रोटीन का उपयोग किया जाता है। एजेंट, एजेंट को खतरे के रूप में पहचानने के लिए शरीर की प्रतिरक्षा प्रणाली को उत्तेजित करता है और इसके खिलाफ एंटीबॉडी का उत्पादन करना शरू कर देता है, ताकि भविष्य में उस एजेंट से जुड़े किसी भी सूक्ष्मजीव को पहचान और नष्ट कर सके। टीके रोगनिरोधी हो सकते हैं जो एक प्राकृतिक या "जंगली" रोगजनक जीवाणु द्वारा भविष्य के संक्रमण के प्रभावों को रोकने या सुधारने के लिए उपयोग में लाये जा सकते हैं। ये चिकित्सीय हो सकते हैं जो पहले से हुई एक बीमारी जैसे कि कैंसर से लड़ने के लिए उपयोग में लाया जाए। टीका लगाने की प्रक्रिया को टीकाकरण कहा जाता है। संक्रामक रोगों को रोकने के लिए टीकाकरण सबसे प्रभावी तरीका है। टीकाकरण के कारण चेचक, पोलियो, खसरा और टेटनस जैसे रोगों के प्रतिबंध के लिए विश्वव्यापी प्रतिरक्षा मिली है।

टीकाकरण की प्रभावशीलता का व्यापक रूप से अध्ययन और सत्यापन किया गया है। उदाहरण के लिए, प्रभावी साबित हुए टीकों में इन्फ्लूएंजा का टीका, एचपीवी का टीका और चिकन पॉक्स का टीका शामिल है। विश्व स्वास्थ्य संगठन (डब्ल्यूएचओ) की रिपोर्ट है कि वर्तमान में पच्चीस अलग-अलग निवारक संक्रमणों के लिए लाइसेंस प्राप्त टीके उपलब्ध हैं।

टीका और टीकाकरण शब्द Variolae vaccinae (गाय के चेचक) से उत्पन्न हुआ है, जो एडवर्ड जेनर द्वारा दिया गया शब्द है जिन्होंने वैक्सीन की अवधारणा विकसित की है और पहले वैक्सीन का निर्माण किया था। उन्होंने 1798 में वैरीओले वैक्सीन, बड़ी चेचक के खिलाफ गाय के चेचक के सुरक्षात्मक प्रभाव का वर्णन किया। जेनर को सम्मानित करने के लिए, सन 1881 में लुई पाश्चर ने प्रस्ताव दिया कि नए सुरक्षात्मक तरीके को वैक्सीन या टीका कहा जाना चाहिए।

इस बात पर पूरी वैज्ञानिक सहमित है कि संक्रामक रोगों से लड़ने और उन्मूलन के लिए टीका एक बहुत ही सुरक्षित और प्रभावी तरीका है। प्रतिरक्षा प्रणाली वैक्सीन एजेंटों को एलीयन के रूप में पहचानती है, उन्हें नष्ट करती है, और उन्हें "याद" रखती है। जब किसी एजेंट के वायरलेंट संस्करण का सामना किया जाता है, तो शरीर वायरस पर प्रोटीन कोट को पहचानता है, और इस तरह से कोशिकाओं में प्रवेश करने से पहले लक्ष्य एजेंट को पहले बेअसर करके प्रतिक्रिया करने के लिए तैयार किया जाता है, और दूसरी बात यह है कि एजेंट द्वारा संक्रमित कोशिकाओं को पहचानने और नष्ट करने का कार्य एजेंट द्वारा विशाल संख्या में बढ़ने से पहले किया जाता है।

टीके के कारण चेचक उन्मूलन हुआ जो मनुष्यों में सबसे अधिक संक्रामक और घातक बीमारियों में से एक है। व्यापक टीकाकरण कार्यक्रमों के कारण, रूबेला, पोलियो, खसरा, मम्स, चिकनपॉक्स और टाइफाइड जैसी अन्य बीमारियां अब लगभग आम नहीं हैं जैसी कि वे सौ साल पहले थीं। जब अधिकांश लोगों को टीका लगाया जाता है, तब बीमारी का प्रकोप फैलना अधिक कठिन होता है। इस प्रभाव को झुंड प्रतिरक्षा कहा जाता है। पोलियो अब अफगानिस्तान, नाइजीरिया और पाकिस्तान के कुछ हिस्सों तक ही सीमित है और पूरे विश्व से व्यापक टीकाकरण के कारण इसका सफाया हो चुका है। भारत में पोलियो उन्मूलन अभियान बड़े जोर शोर से चलता है।

टीकों के प्रकार: कई प्रकार के टीके उपयोग में लाये जाते हैं। ये एक प्रभावी प्रतिरक्षा प्रतिक्रिया को प्रेरित करने की क्षमता को बनाए रखते हुए बीमारी के जोखिम को कम करने की कोशिश करने के लिए इस्तेमाल की जाने वाली विभिन्न रणनीतियों का प्रतिनिधित्व करते हैं।

चित्रः निष्क्रिय टीका

निष्क्रिय टीका - एक निष्क्रिय टीका वायरस कणों, बैक्टीरिया या अन्य रोगजनकों से युक्त एक टीका है जो कल्चर में उगाए गए हैं और फिर रोग उत्पादक क्षमता को नष्ट करने के लिए मारे गए हैं। निष्क्रिय टीकों के लिए रोगजनकों को नियंत्रित परिस्थितियों में उगाया जाता है और संक्रामकता को कम करने के साधन के रूप में मार दिया जाता है और इस तरह टीका से संक्रमण को रोका जाता है। गर्मी या फॉर्मलाडेहाइड जैसी विधि का उपयोग करके वायरस को मार दिया जाता है।

निष्क्रिय किए गए टीकों को वायरस को निष्क्रिय करने के लिए उपयोग की जाने वाली विधि के आधार पर आगे वर्गीकृत किया जाता है। पूरे वायरस के टीके, पूरे वायरस का उपयोग करते हैं जिन्हें गर्मी, रसायन, या विकिरण का उपयोग करके पूरी तरह से नष्ट किया जाता है। स्लिट वायरस टीके वायरस को बाधित करने के लिए एक डिटर्जेंट का उपयोग करके उत्पादित किये जाते हैं। सबयूनिट टीके एंटीजन को शुद्ध करके उत्पन्न होते हैं जो वायरस को प्रतिक्रिया देने के लिए प्रतिरक्षा प्रणाली को सर्वोत्तम रूप से उत्तेजित करते हैं, जबिक वायरस को दोहराने या जीवित रहने के लिए आवश्यक अन्य घटकों को हटाते हैं या जो प्रतिक्रल प्रतिक्रिया पैदा कर सकते हैं।

क्योंकि निष्क्रिय वायरस जीवित वायरस की तुलना में प्रतिरक्षा प्रणाली द्वारा कमजोर प्रतिक्रिया उत्पन्न करते हैं, रोगज़नक़ के खिलाफ एक प्रभावी प्रतिरक्षा प्रतिक्रिया प्रदान करने के लिए इम्यूनोलॉजिक एडजुवेंट्स और कई "ब्रस्टर" इंजेक्शन की आवश्यकता हो सकती है। बुजुर्ग लोग या इम्यूनोडिफ़िशियेंसी वाले लोग जो लाइव टीके नहीं ले सकते हैं, उनके लिए निष्क्रिय टीका सुरक्षा प्रदान कर सकता है। आमतौर पर स्वस्थ लोग सक्रीय टीके लगाते हैं क्योंकि एक एकल खुराक अक्सर सुरक्षित और बहुत प्रभावी होती है।

इंजेक्ट पोलियो वैक्सीन (साल्क वैक्सीन), हेपेटाइटिस "ए" का टीका, रेबीज के टीके, अधिकांश इन्फ्लूएंजा के टीके, टिक-जिनत एन्सेफलाइटिस टीकावायरल निष्क्रिय टीके हैं। इंजेक्शन टाइफाइड का टीका, हैजा का टीका, प्लेग का टीका, पटुंसिस वैक्सीन आदि बैक्टीरियल निष्क्रिय टीके हैं।

चित्रः जीवित टीके की प्रक्रिया

जीवित टीका - जीवित टीके रोगजनको का उपयोग करते हैं जो अभी भी जीवित हैं (लेकिन लगभग हमेशा क्षीण होते हैं, अर्थात् कमजोर होते हैं)। जीवित टीका रोगजनक के विष की सांद्रता को कम करके बनाया गया टीका है। संसेचन एक संक्रामक एजेंट लेता है और इसे बदल देता है ताकि यह हानिरहित या कम विषेला हो जाए। जीवित टीके लंबे समय तक चलने वाले एक मजबूत और प्रभावी प्रतिरक्षा प्रतिक्रिया उत्पन्न करते हैं. विशिष्ट रोगजनको के जवाब में एंटीबॉडी और मेमोरी प्रतिरक्षा कोशिकाओं को बनाने के लिए शरीर को प्रोत्साहित करके वैक्सीन कार्य करता है, जो टीका से बचाता है। जीते हुए टीके के सामान्य उदाहरण खसरा, मम्स, रूबेला, पीला बुखार और कुछ इन्फ्लूएंजा के टीके हैं।

जीवित टीके कई तरह से लगाये जाते हैं:

इंजेक्शन: उपचर्म (जैसे खसरा, कण्ठमाला और रूबेला वैक्सीन, वैरसेला वैक्सीन, येलो फीवर वैक्सीन के लिए) इंट्रार्डर्मल (जैसे तपेदिक वैक्सीन, चेचक का टीका)

म्यूकोसल: नेसल (लाइव इन्फ्लुएंजा वैक्सीन) ओरल (मुख से)(मौखिक पोलियो वैक्सीन, लाइव हैजा वैक्सीन, ओरल टाइफाइड वैक्सीन, ओरल रोटावायरस वैक्सीन)

वैक्सीन की समयरेखाछ: टीकों की कहानी चेचक के खिलाफ सुरक्षा प्रदान करने के लिए पहले वैक्सीन-एडवर्ड जेनर द्वारा गाय के चेचक से मिली सामग्री के उपयोग से शुरू नहीं हुई थी, बल्कि, यह मनुष्यों में संक्रामक रोग के लंबे इतिहास के साथ शुरू हुई और विशेष रूप से, चेचक सामग्री के शुरुआती उपयोग के साथ जिसने उस बीमारी को प्रतिरक्षा प्रदान की। साक्ष्य मौजूद है कि चीनी लोगों ने चेचक के टीकाकरण को 1000 ई.पू. में उपयोग किया था यह

यूरोप और अमेरिका में फैलने से पहले अफ्रीका और तुर्की में भी प्रचलित था।एडवर्ड जेनर की खोज ने, जिसमें 1796 में गाय के चेचक की सामग्री का प्रयोग किया था,चेचक के प्रति प्रतिरोधक क्षमता पैदा की और इस तरीकेको व्यापक बना दिया। उनकी विधि अगले 200 वर्षों में चिकित्सा और तकनीकी परिवर्तनों से गुजरती है, और अंततः चेचक के उन्मूलन के लिए फलदाई हुई।

1885 में लुई पाश्चर ने रेबीज वैक्सीन बनाई जो मानव रोग पर प्रभाव डालने के लिए अगला कदम था। और फिर, बैक्टीरियोलॉजी में नए आविष्कार के कारण इस क्षेत्र में तेजी से विकास हुआ। डिप्थीरिया, टेटनस, एंथ्रेक्स, हैजा, प्लेग, टाइफाइड, तपेदिक और कई और बीमारियों के लिए एंटी टॉक्सिन और टीके 1930 के दशक में विकसित किए गए। 20 वीं शताब्दी का मध्य वैक्सीन अनुसंधान और विकास के लिए एक सक्रिय समय था। प्रयोगशाला में वायरस की वृद्धि के तरीके विकसित होने के कारण नए खोजों के विकास में तेजी हुई जिसमें पोलियों का टीका भी शामिल था। शोधकर्ताओं ने अन्य सामान्य बचपन की बीमारियों जैसे कि खसरा, मम्स और रूबेला को लिक्षत किया और इन बीमारियों के टीके ने रोग को बहुत कम कर दिया।

नवीन तकनीकें अब वैक्सीन अनुसंधान को चलाती हैं, जिसमें पुनः संयोजक डीएनए प्रौद्योगिकी और नई डिलीवरी तकनीकें हैं जो नई दिशाओं में वैज्ञानिकों का नेतृत्व कर रही हैं। रोग के लक्ष्यों में विस्तार हुआ है, और कुछ वैक्सीन अनुसंधान गैर-संक्रामक स्थितियों जैसे कि लत और एलर्जी पर ध्यान केंद्रित करने लगे हैं। एडवर्ड जेनर, लुई पाश्चर, और मौरिस हिलमैन, वैक्सीन के विकास में अग्रणी रहे.

1800-1899	1900-1949	1950-1979	1980-1999	2000-
1798 चेचक 1885 हैजा 1885 रेबीज 1891 एंथ्रेक्स 1896 टाइफाइड 1897 प्लेग	1923 डिप्थीरिया 1923 तपेदिक 1924 टेटनस 1926 पर्टुसिस 1927 टेटनस 1935 पीला बुखार 1943 टायफस	1955 पोलियो (आईपीवी) 1962 पोलियो (ओपीवी) 1963 खसरा 1967 कण्ठमाला 1969 मेनिनजाइटिस ए 1970 रूबेला 1972 हेमोफिलस इन्फ्लुएंजा 1976 व्ययरल इन्फ्लूएंजा 1976 न्यूमोकोकल बहुशर्करा 1977 मेनिनजाइटिस सी (बहुशर्करा)	1981 हेपेटाइटिस बी 1986 मेनिनजाइटिस बी 1989 हेपेटाइटिस ए 1995 वैरिकाला जोस्टर 1998 रोटावायरस 1999 मेनिनजाइटिस सी (संयुग्म)	2000 न्यूमोकोकल संयुग्म 2006 मानव पैपिलोमा वाइरस

1954 - थॉमस पीबल्स ने मीज़ल्स वायरस को अलग किया.थॉमस पीबल्स, एमडी, बोस्टन चिल्ड्रन्स हॉस्पिटल में एक प्रयोगशाला में काम करने वाले, लैब निदेशक को खसरा के लिए जिम्मेदार वायरस को अलग करने के लिए कहा गया था। पीबल्स को बोस्टन के बाहर एक निजी स्कूल में प्रकोप का पता चला और, प्रिंसिपल से अनुमित मिलने के बाद, बीमार छात्रों से रक्त के नमूने एकत्र किए, प्रत्येक लड़के से कहा: "युवक, तुम विज्ञान के मोर्चे पर खड़े हो।" पीबल्स ने वायरस प्राप्त करने के लिए हफ्तों तक प्रयास किया, और अंततः 13 वर्षीय छात्र डेविड एडोम्स्टन से लिए वायरस युक्त रक्त से खसरा वायरस को अलग किया।

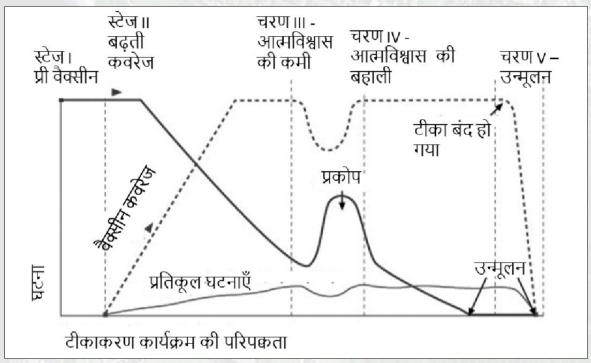
1905 - पोलियो के संक्रामक प्रकृति की खोज- स्वीडन में पोलियो महामारी की एक श्रृंखला के बाद, इवर विकमैन (1872-1914) ने पोलियो के बारे में दो महत्वपूर्ण निष्कर्ष प्रकाशित किए। सबसे पहले, उन्होंने सुझाव दिया कि पोलियो

एक छूत की बीमारी है जो एक व्यक्ति से दूसरे व्यक्ति में फैल सकती है। दूसरा, उन्होंने माना कि पोलियो उन लोगों में मौजूद हो सकता है जिन्हें बीमारी का गंभीर रूप दिखाई नहीं देता।

1879 - पहली प्रयोगशाला वैक्सीन- लुई पाश्चर ने पहली प्रयोगशाला विकसित वैक्सीन का उत्पादन किया जो चिकन हैजा (पाश्चरेल्ला मल्टीडिडा) के लिए थी। वैक्सीन में उपयोग के लिए बैक्टीरिया को पाश्चर, क्षीण या कमजोर कर दिया गया। यह खोज भी एक दुर्घटना वश हुई। सहायक को छुट्टियों के पहले मुर्गियों को वायरस का टीका लगाना था जो उसने छुट्टियों के बाद लगाया पर कल्चर पुराना होने के कारण कम क्षमता का था। मुर्गियों में बीमारी के लक्षण आये पर वे जिन्दा रह गई। पाश्चर के ध्यान में यह बात आ गई और जब पुनः मुर्गियों को वायरस के टीके लगाये, मुर्गियां बीमार नहीं हुई।

1954 - थॉमस पीबल्स ने मीज़ल्स वायरस को अलग किया। थॉमस पीबल्स, एमडी, बोस्टन चिल्ड्रन्स हॉस्पिटल में एक प्रयोगशाला में काम करने वाले, लैब निदेशक को खसरा के लिए जिम्मेदार वायरस को अलग करने के लिए कहा गया था। पीबल्स को बोस्टन के बाहर एक निजी स्कूल में प्रकोप का पता चला और, प्रिंसिपल से अनुमित मिलने के बाद, बीमार छात्रों से रक्त के नमूने एकत्र किए, प्रत्येक लड़के से कहा: "युवक, तुम विज्ञान के मोर्चे पर खड़े हो।" पीबल्स ने वायरस प्राप्त करने के लिए हफ्तों तक प्रयास किया, और अंततः 13 वर्षीय छात्र डेविड एडोम्स्टन से लिए वायरस युक्त रक्त से खसरा वायरस को अलग किया।

1905 - पोलियों के संक्रामक प्रकृति की खोज- स्वीडन में पोलियों महामारी की एक श्रृंखला के बाद, इवर विकमैन (1872-1914) ने पोलियों के बारे में दो महत्वपूर्ण निष्कर्ष प्रकाशित किए। सबसे पहले, उन्होंने सुझाव दिया कि पोलियों एक छूत की बीमारी है जो एक व्यक्ति से दूसरे व्यक्ति में फैल सकती है। दूसरा, उन्होंने माना कि पोलियों उन लोगों में मौजूद हो सकता है जिन्हें बीमारी का गंभीर रूप दिखाई नहीं देता।


1879 - पहली प्रयोगशाला वैक्सीन- लुई पाश्चर ने पहली प्रयोगशाला विकसित वैक्सीन का उत्पादन किया जो चिकन हैजा (पाश्चरेल्ला मल्टीडिडा) के लिए थी। वैक्सीन में उपयोग के लिए बैक्टीरिया को पाश्चर, क्षीण या कमजोर कर दिया गया। यह खोज भी एक दुर्घटना वश हुई। सहायक को छुट्टियों के पहले मुर्गियों को वायरस का टीका लगाना था जो उसने छुट्टियों के बाद लगाया पर कल्चर पुराना होने के कारण कम क्षमता का था। मुर्गियों में बीमारी के लक्षण आये पर वे जिन्दा रह गई। पाश्चर के ध्यान में यह बात आ गई और जब पुनः मुर्गियों को वायरस के टीके लगाये, मुर्गियां बीमार नहीं हुई।

टीकों का अप्रभावी होना: कई कारणों से ये टीके प्रभावी नहीं होते हैं। कभी कभी टीका करण प्रभावी नहीं होता, कभी शरीर की प्रतिक्रिया की कमी आमतौर पर आनुवांशिकी, प्रतिरक्षा स्थिति, आयु, स्वास्थ्य या पोषण की स्थिति से होती है। यह आनुवांशिक कारणों से भी विफल हो सकता है यदि मेजबान की प्रतिरक्षा प्रणाली में बी कोशिकाओं का कोई उपभेद शामिल नहीं हो जो प्रभावी रूप से प्रतिक्रिया करने के लिए और रोगजनक से जुड़े एंटीजन के लिए बाध्यकारी एंटीबॉडी उत्पन्न कर सके। यहां तक कि अगर मेजबान एंटीबॉडी विकसित करता है तो भी अप्रभावी रहने के निम्न कारण हो सकते हैं:

- + संरक्षण पर्याप्त नहीं हो,
- + प्रतिरक्षा बहुत धीरे-धीरे विकसित हो,
- + एंटीबॉडी पूरी तरह से रोगज़नक़ को निष्क्रिय नहीं कर सके
- + रोगजनक के कई उपभेद हो सकना जो सभी प्रतिरक्षा प्रतिक्रिया के लिए समान रूप से अतिसंवेदनशील नहीं हों।

इन सबके बावजूद एक आंशिक, देर से या कमजोर प्रतिरक्षा भी एक संक्रमण को कम कर सकती है, जिसके परिणामस्वरूप मृत्यु दर कम होती है, रुग्णता कम होती है, और स्वास्थ्य लाभ जल्दी होता है। टीके की प्रभावशीलता या प्रदर्शन कई कारकों पर निर्भर है:

- ★ रोग (कुछ रोगों के लिए टीकाकरण दूसरों की तुलना में बेहतर प्रदर्शन करता है)
- ★ वैक्सीन का स्ट्रेन (कुछ टीके विशिष्ट स्ट्रेन के लिए ही प्रभावी होते हैं)
- ★ क्या टीकाकरण समय पर हुआ है।
- ★ कुछ व्यक्ति कुछ टीकों के लिए "गैर-प्रतिक्रियावादी" हैं, जिसका अर्थ है कि वे सही ढंग से टीका लगाए जाने के बाद भी एंटीबॉडी उत्पन्न नहीं करते हैं।
- मिश्रित कारक जैसे कि जातीयता, आयु, या आनुवंशिक प्रवृत्ति।

चित्रः टीका के विकास की प्रक्रिया

प्रतिकूल प्रभाव: बच्चों, किशोरों या वयस्कों को दिए गए टीकाकरण आम तौर पर सुरक्षित होते हैं। अतिरिक्त असर, यदि कोई हो तो भी आम तौर पर हल्के होते हैं। अतिरिक्त असर की दर विशेष वैक्सीन पर निर्भर करती है। कुछ सामान्य दुष्प्रभावों में बुखार, इंजेक्शन स्थल के आसपास दर्द और मांसपेशियों में दर्द शामिल हैं। इसके अतिरिक्त, कुछ व्यक्तियों को वैक्सीन में डाले अवयवों से एलर्जी हो सकती है।

टीकाकरण के बाद किसी भी प्रतिकूल घटनाओं के लिए आम जनता को कम सिहष्णुता है, क्योंकि स्वस्थ व्यक्तियों को रोग से बचाव के लिए टीके दिए जाते हैं। इस कारण से, एक उच्च स्तर की सुरक्षा की उम्मीद टीकाकरण से होती है और इनकी उन दवाओं के साथ तुलना की जाती है, जिनका उपयोग उन लोगों के इलाज के लिए किया जाता है जो बीमार हैं (जैसे कि एंटीबायोटिक्स, इंसुलिन)।

आमतौर पर अन्य दवा उत्पादों की तुलना में टीकों से होने वाले जोखिम के लिए यह कम सिहष्णुता, टीकाकरण के बाद किसी भी प्रतिकूल घटना का पता लगाने और जांच करने की एक बड़ी आवश्यकता में तब्दील हो जाती है।

राष्ट्रीय नियामक प्राधिकरण (एनआरए) टीकों और दवा उत्पादों की गुणवत्ता, सुरक्षा और प्रभावशीलता को सुनिश्चित करते हैं। टीकाकरण कार्यक्रम में उनके परिचय से पहले, क्लिनिकल परीक्षणों में उनकी सुरक्षा और प्रभावकारिता का आकलन करने के लिए टीके मूल्यांकन के कई चरणों से गुजरते हैं। एक बार पेश किए जाने के बाद, टीके उनकी निर्माण प्रक्रिया की बहुत गहन और निरंतर समीक्षाओं से गुजरते हैं और टीकाकरण के बाद प्रतिकूल घटनाओं की निगरानी और जांच जारी रखते हैं ताकि यह सुनिश्चित हो सके कि वे पूरी आबादी के लिए सुरक्षित हैं।

टीके इतने खास क्यों होते हैं?

- टीके स्वास्थ्य को बढ़ावा देते हैं: कई अन्य स्वास्थ्य हस्तक्षेपों के विपरीत, वे स्वस्थ लोगों को स्वस्थ रहने में मदद करते हैं, जिससे एक बड़ी बाधा दूर होती है।
- टीकों की एक विस्तृत पहुंच है: वे व्यक्तियों, समुदायों और संपूर्ण आबादी (चेचक के उन्मूलन) की रक्षा करते हैं।
- टीकों का तेजी से प्रभाव पड़ता है: अधिकांश टीकों का प्रभाव समुदायों और आबादी पर लगभग तत्काल है।
 उदाहरण के लिए, 2000 और 2008 के बीच, टीकाकरण ने वैश्विक मौतों को कम कर दिया।
- टीके जीवन और लागत को बचाते हैं।

सभी टीकों का लक्ष्य एक एंटीजन के खिलाफ प्रतिरक्षा प्रतिक्रिया प्राप्त करना है ताकि जब व्यक्ति को फिर से एंटीजन के संपर्क में लाया जाए, तो एक बहुत मजबूत माध्यमिक प्रतिरक्षा प्रतिक्रिया हो। टीकों में वही एंटीजन होते हैं जो रोगजनकों पर पाए जाते हैं और जो संबंधित बीमारी का कारण बनते हैं। टीकाकरण के माध्यम से जब टीका लगाया गया व्यक्ति बाद में पर्यावरण में जीवित रोगज़नक़ों के संपर्क में आता है, तो प्रतिरक्षा प्रणाली रोग का कारण बनने से पहले रोगज़नक़ों को नष्ट कर सकती है।

टीके के बनाने की प्रक्रिया इस प्रकार है:

- एंटीजेन की उत्पत्ति
- रिहाई और अलग करना
- शुद्धिकरण
- मजबूत करना
- वितरण करना

हर साल, टीके विश्व स्तर पर 2.5 मिलियन से अधिक बच्चों की मौत को रोकते हैं। प्रत्येक वर्ष सही टीकाकरण से अतिरिक्त 2 मिलियन बच्चों की मृत्यु को रोका जा सकता है। वैक्सीन निर्माता टीके विकसित करने का प्रयास करते हैं जो:

- संक्रामक रोग की गंभीरता को रोकने या कम करने में प्रभावी हैं,
- 🕝 बीमारी के खिलाफ टिकाऊ, दीर्घकालिक सुरक्षा प्रदान करें,
- खुराक की न्यूनतम संख्या के साथ प्रतिरक्षा प्राप्त करें,
- 🖝 संक्रमण के खिलाफ व्यापक सुरक्षा प्रदान करने वाले एंटीजन की अधिकतम संख्या प्रदान करें,
- 🚁 नहीं या हल्के प्रतिकूल प्रभाव काकारण बने ,
- समय की एक लंबी अविध में भंडारण की स्थिति में भी स्थिर हैं,
- 💌 बड़े पैमाने पर उत्पादन के माध्यम से सामान्य उपयोग के लिए उपलब्ध हैं,
- 🖝 और संक्रामक बीमारी के लिए जोखिम में पड़ी आबादी के लिए सस्ती हैं।

कोरोना महामारी और टीकाकरण: कोरोना वायरस बीमारी 2019 (COVID-19) एक श्वसन बीमारी है जो कोरोना वायरस, SARS-CoV-2 के एक नए रूप के कारण होती है, और जो पहली बार चीन के वुहान में पहचानी गई थी। वर्तमान में, यह वायरस 200 से अधिक देशों और क्षेत्रों में फैल गया है, जिसके परिणाम स्वरूप करीबन 10 करोड़ से अधिक संक्रमित मामले हैं और कम से कम 2.14 लाख मौतें हुईं हैं। भारत में संख्या 1 करोड़ से अधिक है और 1.53 लाख लोग मौत के घाट जा चुके हैं। 15 जनवरी से हमारे यहाँ टीकाकरण प्रारम्भ हुआ है। जानते हैं टीको के बारे में :

कोवैक्सीन - BBV152 - BBV152 (कोवैक्सीन): एक निष्क्रिय वायरस (मरे हये वायरस) पर आधारित COVID-19 वैक्सीन है जिसे भारत बायोटेक द्वारा भारतीय चिकित्सा अनुसंधान परिषद (ICMR) के सहयोग से विकसित किया जा रहा है। चरण 1 और 2 परीक्षण के अंतर्गत, मई 2020 में, आइसीएमआर के नेशनल इंस्टीट्यूट ऑफ वायरोलॉजी ने पूरी तरह से स्वदेशी कोविड-19 वैक्सीन विकसित करने के लिए मंजूरी दी और वायरस स्ट्रेन प्रदान किया। जून 2020 में, कंपनी को भारत सरकार के ड्रग्स कंट्रोलर जनरल (DCGI) से कोवैक्सिन नामक एक विकासात्मक COVID-19 वैक्सीन के चरण 1 और चरण 2 मानव परीक्षणों का संचालन करने की अनुमति मिली। आइसीएमआर फ़ेज़ । और ॥ द्वारा कुल 12 साइटों का चयन किया गया था, जो टीकाकृत उम्मीदवार के यादिन्छक, डबल-ब्लाइंड और प्लेसबो-नियंत्रित क्लिनिकल परीक्षण थे। दिसंबर 2020 में, कंपनी ने पहले चरण के परीक्षणों के लिए रिपोर्ट की घोषणा की। चरण 3 परीक्षण को नवंबर 2020 में, कोवाक्सिन के चरण 1 और 2 पूरा होने के बाद आयोजित करने की स्वीकृति मिली जो मानव परीक्षण है। इस परीक्षण में 18 वर्ष और उससे अधिक आयु के स्वयंसेवकों के बीच एक यादिन्छक, डबल-ब्लाइंड, प्लेसबो-नियंत्रित अध्ययन शामिल है जो 25 नवंबर को शुरू हुआ। तीसरे चरण के परीक्षणों में मना करने की दर चरण 1 और चरण 2 की तुलना में बहुत अधिक थी। परिणामस्वरूप केवल 13,000 स्वयंसेवकों को 22 दिसंबर तक भर्ती किया गया, जिनकी संख्या 5 जनवरी तक बढकर 23,000 हो गई। भारत बायोटेक ने इग्स कंट्रोलर जनरल ऑफ इंडिया, भारत सरकार को एक आपातकालीन उपयोग प्राधिकरण (EUA) की मांग करते हुए आवेदन किया जो सीरम इंस्टीट्यूट ऑफ इंडिया और फाइजर के बाद तीसरा आवेदन था, जिसने आपातकालीन उपयोग की मंजुरी के लिए किया था। 2 जनवरी 2021 को EUA के लिए अनुमति की सिफारिश की, जो 3 जनवरी को दी गई थी। यह चरण 3 परीक्षण डेटा प्रकाशित होने से पहले आपातकालीन स्वीकृति दी गई। टीका लगाये जाने पर प्रतिरोधात्मक कोशिकाये मरे वायरस को पहचान कर उससे लड़ने के लिये एंटीबॉडी तयार करने लगती हैं। चार हफ्तो के अंतर पर दो खुराक दी जानी है। टीके को 2 से 8 डिग्री सेल्शियस तापमान पर भंडारण करना है।

कोवी शिल्ड - ऑक्सफोर्ड-एस्ट्राजेनेका कोविड -19 वैक्सीन, (एजेड 1222), ऑक्सफोर्ड यूनिवर्सिटी और एस्ट्राजेनेका द्वारा विकसित एक वैक्सीन है, जो इंट्रामस्क्युलर इंजेक्शन द्वारा दी जाती है, और संशोधित चिम्पान्जी एडेनोवायरस (साधारण सर्दी-खांसी) का उपयोग करती है जिसे परिवर्तित कर कोरोना जैसा बनाया गया है। यह भारत के सीरम इंस्टीट्यूट द्वारा निर्मित है जो विश्व का सबसे बडा टीका उत्पादक है और इस टीके को कोवी शील्ड के रूप में बेचा जा रहा है। टीका लगाये जाने पर प्रतिरोधात्मक कोशिकाये वायरस को पह्चान कर उससे लड़ने के लिये एंटीबॉडी तयार करने लगती हैं। चार से बारह हफ्तों के अंतर पर दो खुराक दी जानी है. इस टीके को भी 2 से 8 अंश सेल्शियस तापमान पर भंडारण करना है। दिसंबर 2020 में, वैक्सीन उम्मीदवार ने तीसरे चरण के क्लिनिकल शोध से गुजरना शुरू कर दिया। 30 दिसंबर 2020 को यूके के टीकाकरण कार्यक्रम में उपयोग के लिए वैक्सीन को मंजूरी दी गई थी, और पहला टीकाकरण 4 जनवरी 2021 को प्रशासित किया गया था।

इन टीको के कुछ पार्श्व प्रभाव: बहुत साधारण (10 लोगो में > 1 को) -

- 🔺 कोमलता, दर्द, गर्मी, लालिमा, खुजली, सूजन या चोट जहां इंजेक्शन दिया जाता है
- 🔺 आम तौर पर अस्वस्थ महसूस करना

- 🔺 ठंड लगना या बुखार महसूस होना
- 🔺 कमजोरी लगना
- ▲ सिर दर्द
- 👃 जी मिचलाना
- 🔺 जोडो का दर्द

साधारण (10 लोगो में 1 को) -

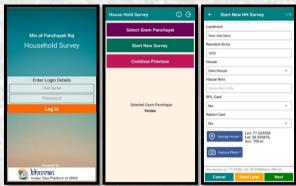
- ★ इंजेक्शन की जगह पर गांठ लगना
- ★ बुखार
- ★ उल्टी आना
- ★ फ्लू जैसे लक्षण जैसे बुखार, गले में खराश, बहती नाक, खांसी और ठंड लगना

असाधारण (100 लोगो में 1 को) -

- + चक्कर आना
- + भूक कम हो जाना
- + पेट मैं दर्द होना
- + बढ़े हुए लिम्फ नोड्स
- + अत्यधिक पसीना, खुजली वाली त्वचा या दाने

यूनिवर्सल टीकाकरण कार्यक्रमः प्रतिरक्षण पर विस्तारित कार्यक्रम सन 1978 में शुरू किया गया था। 1985 में इसे यूनिवर्सल टीकाकरण कार्यक्रम के रूप में प्रचारित किया गया जब शहरी क्षेत्रों से परे पूरे देश में इसकी पहुंच का विस्तार किया गया। 1992 में, यह बाल जीवन रक्षा और सुरक्षित मातृत्व कार्यक्रम का हिस्सा बन गया और 1997 में इसे राष्ट्रीय प्रजनन और बाल स्वास्थ्य कार्यक्रम के दायरे में शामिल किया गया। 2005 में राष्ट्रीय ग्रामीण स्वास्थ्य मिशन के शुभारंभ के बाद से, यूनिवर्सल टीकाकरण कार्यक्रम हमेशा प्रतिरक्षण का एक अभिन्न अंग रहा है। यूनिवर्सल इम्यूनाइजेशन प्रोग्राम (यूआईपी) सबसे बड़े सार्वजनिक स्वास्थ्य कार्यक्रमों में से एक है, जो सालाना 2.67 करोड़ नवजात शिशुओं और 2.9 करोड़ गर्भवती महिलाओं को टीका करने का लक्ष रखता है। यह सबसे अधिक लागत प्रभावी सार्वजनिक स्वास्थ्य कार्यक्रम में से एक है और काफी हद तक पांच वर्षों से कम उम्र के बच्चों में मृत्यु दर में कमी के लिए जिम्मेदार है। यूआईपी के तहत, वैक्सीन रोकथाम योग्य 12 बीमारियों के खिलाफ निः शुल्क टीकाकरण प्रदान किया जा रहा है। 9 बीमारियों के खिलाफ राष्ट्रीय स्तर पर - डिप्थीरिया, पर्टुसिस, टेटनस, पोलियो, खसरा, रूबेला, बचपन के गंभीर तपेदिक, हेपेटाइटिस बी और मेनिनजाइटिस और निमोनिया, जो हेमोफिल्स इन्फ्लुएंजा बी के कारण होता है। 3 बीमारियों के खिलाफ उप-राष्ट्रीय रूप से - रोटावायरस दस्त, न्यूमोकोकल निमोनिया और जापानी एन्सेफलाइटिस; जिनमें से रोटावायरस वैक्सीन और न्यूमोकोकल कंजुगेट वैक्सीन विस्तार की प्रक्रिया में हैं, जबिक जेई वैक्सीन केवल स्थानिक जिलों में प्रदान की जाती है।

एक बच्चे को पूरी तरह से प्रतिरक्षित कहा जाता है यदि बच्चे को बच्चे के 1 वर्ष की आयु के भीतर राष्ट्रीय टीकाकरण अनुसूची के अनुसार सभी उचित टीके दिए गए हैं। यूआईपी के दो प्रमुख मील के पत्थर 2014 में पोलियो के उन्मूलन और 2015 में मातृ और नवजात टेटनस उन्मूलन हैं।


ग्राम पंचायत स्थानिक विकास योजना (GPSDP)

- खुशबू मिर्ज़ा , डॉ विनोद शर्मा , डॉ वी एम चौधरी, डॉ सी एस झा आरआरएससी (पूर्व),नई दिल्ली

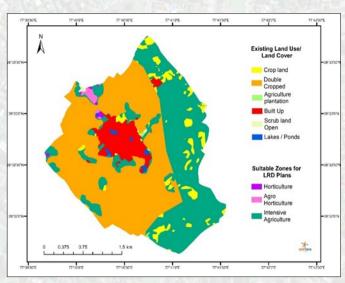
पंचायती राज मंत्रालय ने 13 राज्यों में स्थित 34 ग्राम पंचायतों (GPs) के लिए ग्राम पंचायत स्थानिक विकास योजना (जीपीएसडीपी/GPSDP) तैयार करने के लिए एक प्रायोगिक परियोजना आरंभ की है।

यह स्थानिक योजना संबंधित क्षेत्रों में आर्थिक विकास और सामाजिक न्याय से संबंधित पहलुओं पर केंद्रित है। राष्ट्रीय सुदूर संवेदन केन्द्र (एन आर एस सी) इस परियोजना के लिए एक प्रौद्योगिकी भागीदार के रूप में कार्यरत है और मंत्रालय को स्थानिक डेटा के साथ-साथ तकनीकी जानकारी प्रदान कर रहा है। देश के कई स्कूल ऑफ प्लानिंग एंड नेशनल इंस्टीट्यूट ऑफ टेक्नोलॉजी भी इस परियोजना में भागीदार संस्थान हैं और इन ग्राम पंचायतों के लिए नियोजन का कार्य कर रहे हैं।

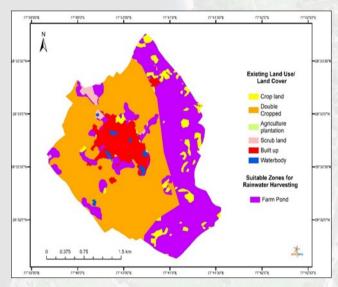
एन आर एस सी ने भागीदार संस्थानो को सुदूर संवेदन उपग्रह डेटा के साथ-साथ, डेटा को किस प्रकार से प्राकृतिक संसाधनों की योजना बनाने के लिए और ग्राम पंचायत के विकास की योजनाओं मे इस डाटा के उपयोग से संबंधित तकनीकी जानकारी प्रदान की है। सभी 34 ग्राम पंचायत से संबंधित विषयगत स्थानिक परतें भी भागीदार संस्थानों के साथ साझा की हैं जो की इस डाटा का प्रयोग करके ग्राम पंचायत स्थानिक विकास योजना बनाने का कार्य कर रहे हैं।

चित्र.1 जीपीएसपीडी मोबाइल ऐप

एन आर एस सी ने प्राकृतिक संसाधनों की जानकारी का आकलन करने और स्थानिक डेटा के प्रयोग का वर्णन करते हुए एक संक्षिप्त पद्धित तैयार की है जिसका उपयोग कार्य योजना बनाने मे किया जा रहा है। ये कार्य योजनाएं जब क्षेत्र सर्वेक्षण के ग्राउंड डेटा के साथ एकीकृत होती हैं, तो विभिन्न सूचकांकों को उत्पन्न करने और अंत में मास्टर प्लान या जीपीएसडीपी (GPSDP) बनाने के लिए सहायक होगी।


घरेलू सर्वेक्षण के लिए मोबाइल ऐपः ग्राम पंचायत में घरेलू सर्वेक्षण करने के लिए आरआरएससी उत्तर द्वारा एक क्रॉस प्लेटफ़ॉर्म मोबाइल ऐप विकसित किया गया है। इस मोबाइल ऐप से 12 अलग-अलग फॉर्म के द्वारा लगभग 175 बिंदुओं पर भूस्थानिक डाटा एकत्रित किया जाता है। भागीदार संस्थानों ने अपनी ग्राम पंचायतों में घरों के सर्वेक्षण के लिए इस मोबाइल ऐप का उपयोग किया है | मोबाइल ऐप के माध्यम से एकत्र किए गए डेटा को भुवन

चित्र.२ भुवन पंचायत पर डैशबोर्ड


पंचायत पोर्टल पर दर्शाने और विश्लेषण के लिए उपलब्ध कराया गया है जिसका उपयोग विभिन्न संस्थान ग्राम पंचायत की योजनाओं की रिपोर्ट्स बनाने मे कर रहे हैं | भुवन पंचायत भू पोर्टल पर डैशबोर्डः जीपीएसडीपी मोबाइल ऐप के माध्यम से एकत्र किए गए सर्वेक्षण डेटा के दृश्य और चित्रमय विश्लेषण के लिए भुवन पंचायत भू पोर्टल पर एक डैशबोर्ड विकसित किया गया है। मोबाइल एप्लिकेशन और डेटा एनालिटिक्स मॉड्यूल डेटा संग्रह और विजुअलाइज़ेशन प्रक्रिया को मानकीकृत करने के लिए सहायक रहे।

ग्राम पंचायतों के लिए प्राकृतिक संसाधन इन्वेंटरी और स्थानिक विश्लेषण: एनआरएससी टीम ने ग्राम पंचायतों के प्राकृतिक संसाधनों की एक सूची तैयार की है और इस का विश्लेषण किया है इसमें विषयगत

चित्र 3 भूमि संसाधन विकास योजना

स्थानिक परतें, जिनमें बुनियादी ढांचे की परतें, एलयू / एलसी, ढलान, जल निकासी नेटवर्क और जल निकाय, आकृति, मिट्टी आदि; वर्षा का दीर्घकालिक विश्लेषण; सतह की जल क्षमता और भूमि और जल संसाधन विकास योजनाओं की उत्पत्ति का दीर्घकालिक मूल्यांकन आदि भी शामिल हैं।

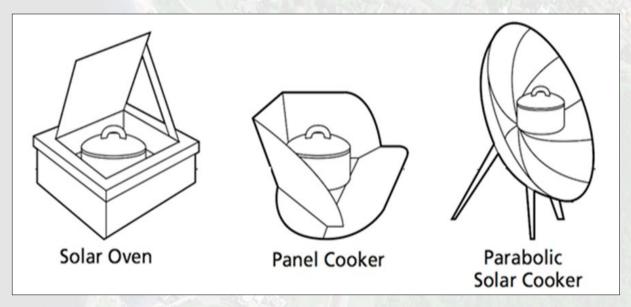
चित्र ४ जल संसाधन विकास योजना

मूल्य-वर्धित भूमि संसाधन और जल संसाधन विकास योजनाओं को बनाने के लिए आवश्यक स्थानिक परतों को अद्यतन करने के लिए अति उच्च-विभेदन वाले उपग्रह (कार्टोसैट 2एस और कोमसैट 3ए) के डेटा का विश्लेषण किया गया है। विभिन्न राष्ट्रीय स्तर की परियोजनाओं के तहत, 1: 50000 पैमाने पर उत्पन्न प्राकृतिक संसाधन डेटा का उपयोग किया गया।

आवश्यक डेटा का विस्तार से अध्ययन किया गया और एकत्रित प्राथमिक मानचित्रों को हाइड्रो-भू-आकृति विज्ञान, स्थलाकृतिक, भूमि उपयोग / भूमि कवर, जल विज्ञान और सामाजिक-आर्थिक मापदंडों में वर्गीकृत किया गया। इसके बाद, इन प्राथमिक मानचित्रों का

उपयोग नियोजन निर्णयों के लिए उपयोगितावादी नक्शे बनाने के लिए किया गया। यह नक्शे, कुछ मामलों मे, एकल विषयगत मानचित्र से और कुछ मे दो या अधिक विषयगत मानचित्रों या विभिन्न विषयों के चुने हुए मापदंडों के संयोजन द्वारा बनाए गए। इस डेटाबेस को जीआईएस के तहत एकीकृत विश्लेषण के लिए मानकीकृत किया गया।

एनआरएससी के क्षेत्रीय केंद्रों की टीम ने परियोजना के तहत चुने गई सभी 34 ग्राम पंचायतों के लिए इनपुट तैयार किए, ये इनपुट ग्राम पंचायत के स्थानिक नियोजन की रिपोर्ट में शामिल करने के लिए साझेदार संस्थानों के साथ साझा किए जा रहे हैं।

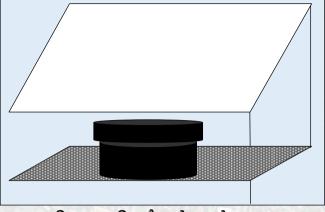


सुवाह्य (पोर्टेबल) एवं पैनोरिमक सोलर कुकर

शिवाजय सक्सेना, सुपुत्र श्रीमती जया सक्सेना राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

सार: हमारे देश की अधिकांश भूमि सौर किरणों से अनावृत है। रसोईघर से लेकर बिजली उत्पादन के बड़े पैमाने तक सौर ऊर्जा का उपयोग करने का प्रयास किया जा रहा है। इस दिशा में, मैं अपने इस लेख में सौर कुकर के लिए एक नया मॉडल प्रस्तुत कर रहा हूं, जिसका मैंने डिजाइन पेटेंट भी दायर किया है।

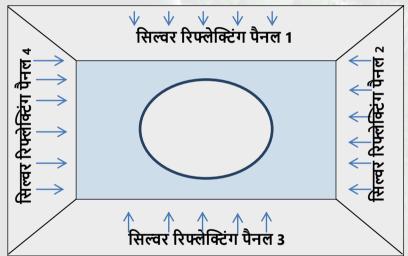
मुख्य भाग: एक प्रभावी सौर कुकर खाना पकाने के बर्तन को गर्म करने के लिए सूर्य की ऊर्जा का उपयोग करता है और खाना पकाने की अधिकतम प्रभावशीलता के लिए ऊर्जा (गर्मी) को कुशलता से बनाए रखता है। अधिकतम दक्षता के लिए यह आवश्यक है कि सूर्य को "ट्रैक" किया जाए, या दूसरे शब्दों में सौर कुकर को इस प्रकार समायोजित करें कि सूर्य की किरणों को बेहतर रूप से ध्यान केंद्रित करने और अवशोषित करने में सक्षम होने के लिए यह सीधे सूर्य की ओर हो। सौर कुकर की कई प्रस्तावित संरचनाएं हैं जैसा कि चित्र 1 में दिखाया गया है।



विभिन्न प्रकार के सौर कुकर, चित्र 1 में दिखाए गए हैं। सूर्य के साथ-साथ चलने पर अनावरण (एक्सपोजर) के कोण और अनुकूलन (ओरिएंटेशन) को बदलना पड़ता है, यानी किसी अंतराल पर पूरे दिन इसका निरीक्षण (मॉनिटर) करने की आवश्यकता होती है। यह ग्रामीण क्षेत्रों में व्यावहारिक रूप से व्यवहार्य होगा, लेकिन शहरी क्षेत्रों में विशिष्ट जीवन शैली को देखते हुए इस प्रकार के सोलर कुकर को उपयोग में लाना कठिन है।

मैनें इस मॉडल में प्रभावी सौर खाना पकाने के लिए तीनों वैज्ञानिक सिद्धांतों का उपयोग करने का प्रयास किया है, i) केन्द्रीकरण (प्रतिबिंब, या परावर्तन), ii) अवशोषण (आकर्षित करने या धारण करने की क्षमता), और iii) अवधारण (तिपश या गर्मी बनाए रखने की क्षमता)। सूर्य की दिशाओं से निरपेक्ष, सूर्य की किरणों का परावर्तन चारों तरफ से परावर्तक पैनलों द्वारा किया जाता है, जो प्रकाश की किरणों (यूवी) को आंतरिक खोखले बॉक्स में केंद्रित करता है। ये प्रतिबिंबित पैनल उन सामग्रियों से बने हो सकते हैं जिनके निर्माण में उपयोग किए जाने वाले पदार्थ चमकदार और प्रतिबिंबित हों जैसे चांदी, क्रोमियम या एल्यूमीनियम जैसे पदार्थ। मुक्त बहने वाली प्रवाहित हवा के खिलाफ अधिक दृढ़ता प्रदान करने के लिए मेरे मॉडल में इन तिरछे पैनलों का सिन्नवेश कंटेनर की सीमा पर किया जाता है।

खाना पकाने में सूर्य की ऊर्जा (गर्मी) का अवशोषण सबसे अच्छा तब प्राप्त होता है जब एक सतह का रंग गहरा होता


है, मैं इसका अनुसरण करता हूं और सौर कूकर के अंदरूनी हिस्से के साथ-साथ खाना पकाने के लिए उपयोग किए जाने वाले बर्तनों को काले रंग से रंग देता हूं। इसके अतिरिक्त मैं बर्तनों के कम घनत्व वाले प्रकार का उपयोग करता हूं क्योंकि यह गर्मी (ऊर्जा) को अच्छी तरह से अवशोषित करता है एवं गर्मी को और अधिक तेज़ी से और समान रूप से भोजन में स्थानांतरित कर सकता है।

चित्र 2(अ): बिना पैनल के सामने का दृश्य

सौर खाना पकाने में अवधारण तीसरा सिद्धांत है। यदि सोलर कुकर अच्छी तरह से तापावरोधित (इंसुलेटेड) नहीं

है और यदि इसमें आवरण, या ढक्कन नहीं है, तो सभी केंद्रित ऊष्मा (ऊर्जा) और अवशोषित गर्मी जल्दी से हवा में फैल जाएंगे और आसपास के वातावरण में खो जाएंगे। मेरे मॉडल में संचित ऊष्मा को धारण करने, संचित करने और पर्याप्त रूप से उच्च स्तर के "निर्माण" करने के लिए, कपास (कॉटन) सामग्री द्वारा कुकर की निचली सतह, बगलों पर और ऊपर ढक्कन को आविरत (इन्सुलेट) किया जा रहा है। कपास प्रकृति के अनुकूल होने के साथ-साथ, ढक्कन के पारदर्शी होने तथा बाहरी एवं आंतरिक सतह के बीच में एयर कुशन का कार्य करता है।

चित्र 2(ब): पैनलों के साथ शीर्ष दृश्य

इसे बनाने के लिए आवश्यक सामग्री: मेरे प्रस्तावित मॉडल को बनाना बहुत ही सरल है तथा इसके लिए प्रयुक्त होने वाली सामग्री बहुत कम व सस्ती है एवं आसानी से सुलभ है।

एक आवरण चढ़ा डिब्बा (इंसुलेटेड बॉक्स) जो कि अंदर से काले रंगे का हो; चार ट्रेपेज़ॉइडल आकार के अपवर्तक पैनल जो की बॉक्स के आयाम के लिए उपयुक्त हों तथा फ्लैप के साथ एक ढक्कन जो इसे

बॉक्स की सीमा पर लॉक कर सकता है। पारंपरिक सोलर कुकर में उपयोग होने वाले खाना पकाने के बर्तन इस पैनोरिमक सोलर कुकर में भी उपयोग किए जा सकते हैं।

निष्कर्ष: प्रस्तावित पोर्टेबल एवं पैनोरिमक सौर कुकर का सबसे महत्वपूर्ण लाभ यह है कि इसे कोण और अभिविन्यास में नियमित बदलाव की आवश्यकता नहीं है, इस प्रकार यह शहरी क्षेत्रों के लिए विशेष रूप से आदर्श बनता है। इस पोर्टेबल कुकर को फ्लैट की बालकनी में भी रखा जा सकता है जहां सूरज की रोशनी या तो सीधे आती है या परावर्तित होती है। इसका निर्माण बहुत आसान एवं मितव्ययी तथा उपयोग बहुत सरल है।

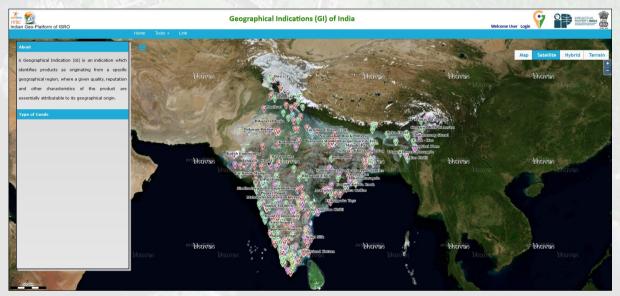
यह प्रस्तावित सोलर कूकर अक्षय ऊर्जा का उपयोग एवं स्वास्थ्य वर्धक भोजन, इन दो महत्वपूर्ण उपलब्धियों को प्राप्त करने में अति उपयोगी कदम है एवं स्मार्ट शहरों की ऊर्जा की मांग को कम करने की दिशा में *एक* डेल्टा कदम होगा।

इसरो भुवन में भारत के भौगोलिकसंकेतों का जियो पोर्टल

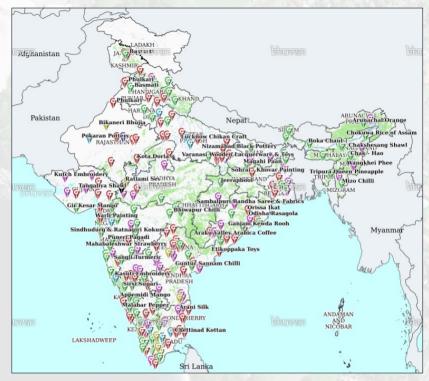
डॉ. पूंपावै वी , साई राम कृष्णा जे. एवं अरुलराज एम. आर.आर.एस.सी.-(दक्षिण), बेंगलुरू

'भौगोलिक संकेत' (जी.आई.) एक प्रकार के संकेत या प्रतीक होते हैं जिससे विशेष भौगोलिक क्षेत्र में उत्पन्न होने वाले विशिष्ट उत्पादों को चिह्नित किया जाता है। इसमें उत्पाद की गुणवत्ता, प्रमाणिकता एवं उसके मूल भौगोलिक उत्पत्ति स्थल की अन्य विशिष्टताएं अनिवार्य रूप से सिन्निहित होती हैं। 'भौगोलिक संकेत के भू-स्थानिक डेटाबेस परियोजना' का कार्य क्षेत्रीय सुदूर संवेदन केंद्र (आर.आर.एस.सी.) - दक्षिण, बेंगलूरू एवं एन.आर.एस.सी. की भुवन टीम द्वारा भौगोलिक संकेतक रजिस्ट्री (चेन्नई) के सहयोग से किया गया है।

वाली देशी और पारंपरिक उत्पादन प्रक्रियाओं के अलावा उसकी विशिष्ट प्रकृति एवं अनोखापन से संबंधित प्राकृतिक कारकों जैसे जलवायु, मिट्टी, तापमान, वर्षा, वृक्षारोपण के तरीके और भूमि उपयोग के परिवर्तनों का एक संयोजन है। भारत में इसरो के भुवन वेब पोर्टल पर भौगोलिक संकेतों की वेबसाइट के लिए वेब जी.आई.एस. अनुप्रयोग का उदघाटन श्री शांतन चौधरी, निदेशक,


'भौगोलिक संकेत' किसी उत्पाद के

उत्पादकों द्वारा पीढियों से अपनाई जाने

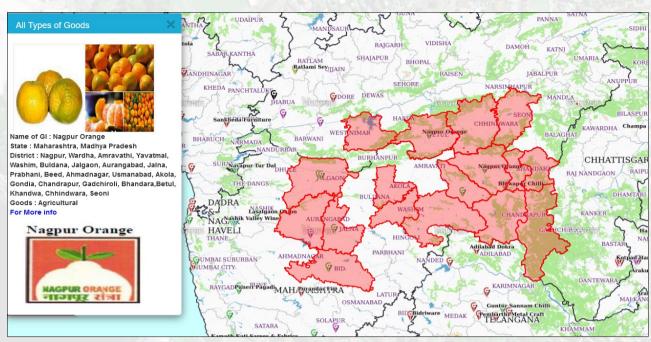

एन.आर.एस.सी., इसरो द्वारा दिनांक 13-

चित्र-1: भारत के भौगोलिक संकेतों के उदाहरण एन

11-2020 को वीडियो सम्मेलन के माध्यम से श्री ओम प्रकाश गुप्ता, आई.ए.एस., पेटेंट डिजाइन ट्रेडमार्क के नियंत्रक और जी.आई. के रिजस्ट्रार की उपस्थिति में किया गया। वेब पोर्टल लॉन्च कार्यक्रम में डॉ. सी.एस. झा, मुख्य महाप्रबंधक, क्षेत्रीय केंद्र, डॉ. के. गणेश राज, महाप्रबंधक, क्षेत्रीय सुदूर संवेदन केंद्र-दक्षिण, श्री ए.वी.वी. प्रसाद, उप

चित्र-2: भुवन में भौगोलिक संकेतों का वेब पोर्टल

वित्र-3: भुवन पोर्टल पर में भारत के मानचित्र पर भौगोलिक संकेतों का चित्रण संपूर्ण कार्यक्रम का समन्वयन किया।


निदेशक-बी.जी.डी.डी.ए., श्री चिन्नाराजा जी. नायड (प्रधान-जी.आई. रजिस्टी), श्री. प्रशांत कुमार एस., श्री भैरप्पनवर (वरिष्ठ परीक्षक-जी.आई. रजिस्टी), श्री.चंद्रशेखर जे (वैज्ञानिक, मुख्य महाप्रबंधक कार्यालय), भवन टीम (श्री अरुलराज, श्री साई राम कृष्ण) और क्षेत्रीय सुदूर संवेदन केंद्र-दक्षिण के वैज्ञानिकों (डॉ. पूंपावै वी, श्रीमती मंजुला वी. बी.,श्रीमती नागश्री टी.आर) ने भी भाग लिया। एन.आर.एस.सी. के श्री अरुलराज ने सीधे प्रदर्शन द्वारा वेब पोर्टल की प्रमुख विशेषताओं पर प्रकाश डाला। भौगोलिक संकेतक परियोजना की समन्वयक डॉ. वी. पंपावै. आर.आर.एस.सी.-दक्षिण ने

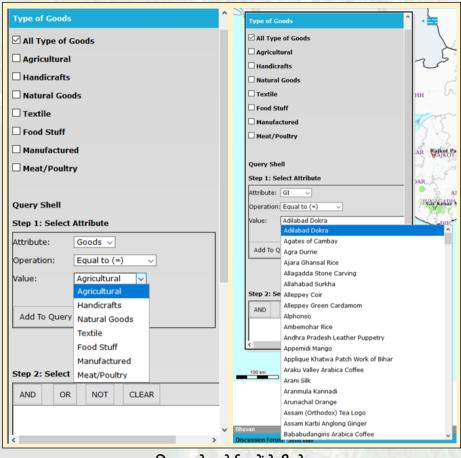
भौगोलिक सूचना प्रणाली (जी.आई.एस.) प्लेटफ़ॉर्म में ओपन सोर्स (क्यू.जी.आई.एस./ QGIS) सॉफ्टवेयर का उपयोग करके स्थानिक चित्रकल्प की विशेषताओं सिहत 300 से अधिक भौगोलिक संकेतों (जी.आई.) को आर.आर.एस.सी-दिक्षण में विकसित किया गया है। भौगोलिक संकेत के उत्पादों को कृषि, हस्तिशल्प, कपड़ा, खाद्य सामग्री, निर्मित सामग्री, प्राकृतिक सामान और मांस / मर्गी जैसे श्रेणियों के अंतर्गत वर्गीकृत किया गया है।

चित्र-4: प्रतीकों द्वारा दर्शाये गये जी.आई.उत्पाद

इस परियोजना में भुवन (BHUVAN) टीम द्वारा स्थानिक डेटाबेस को अनुकूलित किया गया है। भुवन वेब-पोर्टल में उपग्रह प्रतिबिम्ब एवं मानचित्र पर विभिन्न उत्पादों के केरी शेल के अलावा, संबंधित जिलों के स्थानिक दृश्यों के साथ भौगोलिक संकेत बिंदुओं को सफलतापूर्वक होस्ट किया गया है। भौगोलिक संकेतों का जी.आई.एस. समर्थित स्थानिक प्रतिनिधित्व मानचित्रों के भौगोलिक अंतरिक्ष में भौगोलिक संकेतों के वितरण को साकार करने में मदद करता है। भौगोलिक संकेतों का पूर्णतः एकीकृत जी.आई.एस. डेटाबेस पंजीकृत भौगोलिक संकेतों के उत्पत्ति-स्थलों को प्रदर्शित

चित्र-5: मानचित्र पर पॉप-अप बॉक्स और जिला बहुभुज द्वारा जी.आई. उत्पाद के बारे में जानकारी

करता है और जिला या तालुक की सीमा के स्तर पर उसके उत्पादन की मात्रा को भी दर्शाता है। पॉप-अप बॉक्स और जिला बहुभुज संबंधित जी.आई. उत्पाद के बारे में जानकारी भी देते हैं।



चित्र-६: उपग्रह चित्र पर पॉप-अप बॉक्स और जिला बहुभुज द्वारा जी.आई. उत्पाद के बारे में जानकारी

उपग्रह प्रतिबिम्बिकी (सैटेलाइट इमेजरी) के साथ भौगोलिक संकेतों को प्रदर्शित करने एवं खोजने में परियोजना का वर्तमान कार्य विषयगत मानिवत्रों और पारस्परिकक्रिया वेब-आधारित विजुअलाइज़ेशन प्लेटफ़ॉर्म के माध्यम से भौगोलिक संकेतों की मौजूदा सूची में स्थानिक आयाम प्रदान करता है। जी.आई. के भौगोलिक स्थान (अक्षांश, देशांतर) और उसके उत्पादन क्षेत्र (गांव, शहर, तालुक, जिला, राज्य) को दर्शाने वाले स्थानिक डेटा के साथ-साथ उसके चित्र (फोटोग्राफ), प्रतीक चिह्न (लोगो), सामग्री का वर्गीकरण, आवेदक एवं पंजीकरण विवरण सित्रहित विशेषताओं को भौगोलिक सूचना प्रणाली (GIS) का उपयोग करते हुए विकसित किया गया है।

यह वेबसाइट भौगोलिक संकेत के रूप में पंजीकृत और टैग किए गए उत्पादों के स्थानिक चित्रकल्प (विजुअलाइज़ेशन) प्रदान करती है । सामग्री के प्रकार, वर्गीकरण, आवेदक के नाम एवं पता, पंजीकरण वैधता, फोटो

और उत्पाद के प्रतीक चिह्न (लोगो) से संबंधित सूचनाएं इस डेटाबेस में सन्निहित की गई है। इसलिए यह भ्-स्थानिक डेटाबेस भौगोलिक संकेतों के पंजीकरण के प्रबंधन में सहायता करता है।

चित्र-रः वेब पोर्टल में केरी शेल

आभार: लेखिका वेब पोर्टल उदघाटन कार्यक्रम के दौरान वीडियो कांफ्रेंसिंग की सुचारु व्यवस्था करने के एन.आर.एस.सी. की सुविधा टीम के प्रति अपना धन्यवाद एवं आभार व्यक्त करती है। वेब पोर्टल उद्घाटन कार्यक्रम की फोटोग्राफी करने के लिए वह श्री चंद्रकुमार एवं यह आलेख लिखने में अनुवाद संबंधित सहयोग के लिए श्री राधेश्याम यादव, क्षेत्रीय सुदूर संवेदन केंद्र-दक्षिण (बेंगलुरु) के प्रति भी आभारी है।

केरी शेल (Query Shell):

इस वेब पोर्टल पर उत्पादों के

अलाइज़ेशन) के लिए एक केरी

शेल है जो उपयोगकर्ता द्वारा

अभिव्यक्ति पर आधारित होती

है। बॉक्स विकल्प की जाँच

करके किसी विशेष प्रकार की

सामाग्री या सभी प्रकार की

सामग्री को हाइलाइट किया जा

विशिष्टताओं के चयन के

विकल्प (i) उत्पादों के प्रकार

एवं (ii) भौगोलिक संकेतो के

नाम पर आधारित होते हैं। जब

क्वेरी प्रस्तुत की जाती है, तो

जियोपोर्टल विज्ञअलाइज़ेशन

मॉड्यूल में आउटपुट हाइलाइट

है।

केरी

केरी

(विज

की

स्थानिक चित्रकल्प

परिभाषित

सकता

हो जाता है।

चित्र ४- ऑनलाइन वेब पोर्टल उदघाटन कार्यक्रम की तस्वीरें

त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) एवं नई डेटा गोपनीयता नीति

जया सक्सेना राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

सार: त्वरित संदेश (इंस्टेंट मेसेजिंग) (आईएम) साझा सॉफ्टवेयर ग्राहक के साथ-साथ वैयक्तिक (पर्सनल) कंप्यूटर या अन्य उपकरणों का प्रयोग करने वाले दो या अधिक लोगों के बीच समयोचित प्रत्यक्ष पाठ्य-आधारित संचार का एक रूप है। प्रयोक्ता के पाठ्य को एक नेटवर्क जैसे कि इंटरनेट के माध्यम से भेजा जाता है। अधिक उन्नत त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) सॉफ्टवेयर ग्राहक संचार की परिष्कृत विधियों जैसे कि वॉयस या वीडियो कॉलिंग का उपयोग करने की अनुमति प्रदान करते हैं।

वर्तमान काल में ये त्वरित संदेश सॉफ्टवेयर भारत देश में ही नहीं अपितु सम्पूर्ण विश्व में अधिकता से प्रयुक्त हो रहें हैं। इस श्रेणी में बहुत से उत्पाद हैं जोकि विभिन्न सेवाएँ प्रदान करते हैं एवं डेटा को गोपनीय रखते हैं। अब 08 फरवरी 2021 से नई डेटा गोपनीयता नीति लागू की जा रही है। इस लेख में त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) की कार्य प्रणाली, प्रमुख उत्पाद, व्हाट्सएप, प्रदान की जाने वाली सेवाएँ एवं नई डेटा गोपनीयता नीति के बारे में बताया गया है।

पूर्ण लेख: 'आईएम (त्वरित संदेश) व्यापक शब्द ऑनलाइन चैट के अंतर्गत आता है, क्योंकि यह एक समयोचित पाठ्य-आधारित नेटवर्क से जुडी हुई संचार व्यवस्था है, लेकिन यह इस अर्थ में भिन्न है कि यह उन ग्राहकों पर आधारित है जो निर्दिष्ट रूप से ज्ञात प्रयोक्ताओं (अक्सर "बन्धु सूची", "मित्र सूची" या "संपर्क सूची" का इस्तेमाल करने वालों) के बीच संयोजनों को सहज बनाते हैं, जबिक ऑनलाइन चैट' में वेब आधारित अनुप्रयोग भी शामिल होते हैं जो विविध-प्रयोक्ता परिवेश में (अक्सर अंजान) प्रयोक्ताओं के बीच संचार की अनुमित प्रदान करते हैं।

इसका महत्व यह है कि ऑनलाइन चैट और इंस्टेंट मेसेजिंग (त्विरित संदेश भेजना) अन्य प्रौद्योगिकियों जैसे कि ई-मेल से प्रयोक्ताओं के समयोचित वार्तालाप चैट द्वारा संचारों की अनुभूत समक्रमिकता के कारण भिन्न होता है। कुछ प्रणालियां संदेशों को समय विशेष में 'लॉग ऑन' नहीं रहने वाले लोगों को संदेश भेजने (ऑफ़लाइन संदेश) की अनुमित प्रदान करते हैं, इस प्रकार वे आईएम एवं ई-मेल के बीच के कुछ अंतरों को दूर करते हैं जो अक्सर इससे संबंधित ई-मेल खाते में भेज कर किया जाता है। दो या दो से अधिक परस्पर जुड़े हुए कम्प्यूटर या अन्य डिजिटल युक्तियों और उन्हें जोडने वाली व्यवस्था को **कंप्यूटर नेटवर्क** कहते हैं।

ये कम्प्यूटर आपस में इलेक्ट्रोनिक सूचना का आदान-प्रदान कर सकते हैं और आपस में तार या बेतार से जुड़े रहते हैं। सूचना का यह आवागमन खास परिपाटी से होता है, जिसे प्रोटोकॉल कहते हैं और नेटवर्क के प्रत्येक कम्प्यूटर को इसका पालन करना पड़ता है। कई नेटवर्क जब एक साथ जुड़ते हैं तो इसे इंटरनेटवर्क कहते हैं जिसका संक्षिप्त रूप इन्टरनेट (अंतर्जाल) काफ़ी प्रचलित है। अलग अलग प्रकार की सूचनाओं के कार्यकुशल आदान-प्रदान के लिये विशेष प्रोटोकॉल हैं।

आईएम (त्वरित संदेश) प्रभावी और कुशल संचार की अनुमित प्रदान करता है, इस प्रकार स्वीकृति या उत्तर की तत्काल प्राप्ति की इजाजत देता है। कई मामलों में त्वरित संदेश भेजने (इंस्टेंट मेसेजिंग) में अतिरिक्त विशेषताएं शामिल होती हैं जो इसे अधिक लोकप्रिय बना सकती हैं। उदाहरण के लिए, प्रयोक्ता वेब कैमरे का उपयोग कर एक दूसरे को देख सकते हैं, या एक माइक्रोफोन एवं हेडफोनों या लाउडस्पीकरों का उपयोग कर इंटरनेट पर नि:शुल्क बातचीत भी कर सकते हैं। कई उपभोक्ता कार्यक्रम (क्लाइंट प्रोग्राम) फ़ाइल के हस्तांतरण की भी अनुमित प्रदान

करते हैं, यद्यपि आम तौर पर वे विशिष्ट रूप से स्वीकार्य आकार की फ़ाइलों में ही सीमित रहते हैं। आमतौर पर एक पाठ्य संवाद को बाद के संदर्भ के लिए विशिष्ट रूप से सहेज कर रखना संभव है। त्वरित संदेश (इंस्टेंट मेसेज) अक्सर एक स्थानीय मेसेज हिस्ट्री (संदेश के पूर्ववृत्तों) में जमा रहते हैं और इस प्रकार इसे निरंतर प्रकृति वाले ई-मेलों के जैसा बना देते हैं। प्रत्येक आधुनिक त्वरित सन्देश (IM) सेवा आम तौर पर अपने ग्राहक को या तो अलग से स्थापित सॉफ्टवेयर या ब्राउजर-आधारित

चित्र 1: एक कम्प्यूटर नेटवर्क का योजनमूलक चित्र

ग्राहक (क्लाइंट) प्रदान करती है। ये सब विशेष रूप से उस कंपनी की सेवा के साथ कार्य करते हैं, हालांकि कुछ अन्य सेवाओं के साथ सीमित कार्य की अनुमति भी प्रदान करते हैं।

मानक नि:शुल्क त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) कार्यक्रम फाइल (संचिका) अंतरण, संपर्क सूचियों, एक साथ बातचीत की क्षमता आदि जैसे उपयोग प्रदान करता है। ये वे सभी कार्य हैं जिनकी जरुरत एक छोटे व्यवसाय को होती है लेकिन बड़े संगठनों को और अधिक परिष्कृत प्रोग्रामों (अनुप्रयोगों) की जरुरत होगी जो एक-साथ कार्य कर सकें| इसके लिए सक्षम अनुप्रयोगों का पता लगाने का उपाय त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) अनुप्रयोगों के इंटरप्राइज संस्करण का उपयोग करना है। इसमें एक्सएमपीपी (XMPP), लोटस सेमटाइम, माइक्रोसॉफ्ट ऑफिस कम्यूनिकेटर आदि जैसे शीर्षक शामिल हैं जो अक्सर अन्य इंटरप्राइज अनुप्रयोगों जैसे कि कार्यप्रवाह प्रणालियों के साथ एकीकृत होते हैं। ये इंटरप्राइज अनुप्रयोग या इंटरप्राइज अनुप्रयोग एकीकरण (ईएआई) कुछ सीमाओं अर्थात् एक आम प्रारूप में आंकड़ा संचय करने तक के लिए निर्मित होते हैं।

त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) के लिए एक एकीकृत मानक तैयार करने के कई प्रयास किये जा चुके हैं। कई भिन्न प्रॉटोकोलों को संयोजित करने के दो तरीके हैं:

- एक तरीका कई भिन्न प्रॉटोकोलों को आईएम (IM) ग्राहक अनुप्रयोग के भीतर संयोजित करना है।
- दूसरा तरीका है कई भिन्न प्रॉटोकोलों को आईएम (IM) सर्वर अनुप्रयोग के भीतर संयोजित करना। यह दृष्टिकोण अन्य सेवाओं के साथ संवाद करने के कार्य को सर्वर के पास भेज देता है। ग्राहकों को आईएम प्रॉटोकोलों के बारे में जानने या ध्यान रखने की कोई जरूरत नहीं होती. उदाहरण के लिए, एलसीएस (LCS) 2005 सार्वजिनक आईएम (IM) संयोजनीयता। यह दृष्टिकोण एक्सएमपीपी (XMPP) सर्वरों में लोकप्रिय है; हालांकि, तथाकथित परिवहन परियोजना बंद प्रॉटोकोलों या प्रारूपों वाले किसी अन्य परियोजना के समान ही विपरीत अभियांत्रिकरण की कठिनाईयों को झेलती है।

कुछ पद्धितयां संगठनों को सर्वर तक सीमित पहुंच स्थापित करने में सक्षम कर (अक्सर अपने फायरवाल के पूर्ण रूप से पीछे स्थित आईएम नेटवर्क के साथ) अपने स्वयं के निजी त्वरित संदेश प्रेषक (इंस्टेंट मेसेजिंग) नेटवर्क बनाने की अनुमित एवं प्रयोक्ता की अनुमित प्रदान करते हैं। अन्य कॉर्पोरेट संदेश प्रणालियां एक सुरक्षित फायरवाल के अनुकूल एचटीटीपीएस (HTTPS)-आधारित प्रॉटोकोल का उपयोग कर पंजीकृत प्रयोक्ताओं को संस्था के लैन के बाहर से भी संबंध स्थापित करने की अनुमित प्रदान करती हैं। आमतौर पर, एक समर्पित कॉर्पोरेट आईएम सर्वर के कई लाभ होते हैं जैसे कि पहले से भरी हुई संपर्क सूची, समेकित प्रमाणीकरण और बेहतर सुरक्षा एवं गोपनीयता।

मोबाइल इंस्टैंट मेसेजिंग: मोबाइल त्वरित संदेश प्रेषण (मोबाइल इंस्टेंट मेसेजिंग)-एमआईएम(MIM) एक प्रौद्योगिकी है जो मानक मोबाइल फोनों से लेकर स्मार्टफोन (उदाहरण: जो उपकरण आईओएस, ब्लैकबेरी ओएस, सिम्बियन ओएस, एंड्रॉयड ओएस, विन्डोज मोबाइल और अन्य ऑपरेटिंग प्रणाली का इस्तेमाल करते हैं) तक जैसे किसी सुवाह्य उपकरण से त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) सेवा को ऐक्सेस करने की अनुमित प्रदान करता है। यह दो तरह से किया जाता है:

- अंतःस्थापित ग्राहक प्रत्येक विशेष्ट उपकरण के लिए ग्राहक के अनुरूप आईएम तैयार कर लिया जाता है।
- ग्राहक रिहत प्लेटफार्म एक ब्राउज़र आधारित अनुप्रयोग जिसके लिए हैंडसेट में किसी सॉफ्टवेयर को डाउनलोड करने की आवश्यकता नहीं होती है और जो किसी भी नेटवर्क के सभी उपयोगकर्ताओं और सभी उपकरणों को उनकी आईएम सेवा से आदर्श रूप में संपर्क स्थापित करने में सक्षम बनाता है।

वेब ब्राउसर में: जीमेल के वेबपेज में ही त्वरित संदेश भेजने की क्षमता है जिसका इस्तेमाल किसी वेब ब्राऊजर में आईएम ग्राहक डाउनलोड एवं स्थापित किये बिना किया जा सकता है। बाद में याहू और हॉटमेल ने भी इसे लागू किया। ईबडी (eBuddy) एवं मीबो (Meebo) वेबसाइटें विभिन्न आईएम सेवाओं का त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) प्रदान करती है। आम तौर पर ऐसी सेवाएं पाठ वार्तालाप (टेक्स्ट चैट) तक सीमित रहती हैं, हालांकि जीमेल में वॉयस एवं वीडियो की क्षमताएं भी हैं|

मित्र से मित्र अंतर्जाल: मित्र से मित्र अंतर्जाल (नेटवर्क) में त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) किया जा सकता है, जिसमें प्रत्येक नोड मित्र सूची के मित्रों को जोड़ता है। यह मित्रों को मित्र के साथ बातचीत करने एवं उस नेटवर्क पर सभी मित्रों के साथ त्वरित संदेशों के लिए वार्ताकक्ष (चैटरूम) का निर्माण करने की अनुमति प्रदान करता है।

त्वरित संदेश (आईएम) भाषा: कभी-कभी उपयोगकर्ता बातचीत को तेज करने या कुंजी को दबाने की संख्या को कम करने के लिये इंटरनेट की खास बोली या पाठ्य भाषा का उपयोग करते हैं। यह भाषा सार्वभौमिक बन गई है, जिसमें 'लोल' जैसे प्रसिद्ध कथनों का अनुवाद आमने-सामने की भाषा के रूप में किया जाता है।

इसके कुछ मानक हैं जिन्हें मुख्यधारा की बातचीत में शुरू किया जा रहा है जिसमें शामिल हैं '#' जो कथन में व्यंग्य को सूचित करता है और '*' जो वर्तनी की गलती एवं/या पिछले संदेश में व्याकरण में त्रुटि और इसके बाद उसके संशोधन को सूचित करता है।

व्यावसायिक अनुप्रयोग: त्विरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) वैयक्तिक कंप्यूटर, ई-मेल एवं वर्ल्ड वाइड वेब के समान ही साबित हुआ है क्योंकि व्यावसायिक संवाद माध्यम के रूप में इसके उपयोग का अभिग्रहण प्रमुख रूप से औपचारिक अधिदेश या कॉपोरेट सूचना प्रौद्योगिकी विभागों द्वारा प्रावाधानीकरण की अपेक्षा कार्यस्थल पर उपभोक्ता सॉफ्टवेयर का उपयोग करने वाले व्यक्तिगत कर्मचारियों से प्रेरित था। वर्तमान में करोड़ों उपभोक्ता आईएम (IM) खातों का इस्तेमाल कंपनियों और अन्य संगठनों के कर्मचारियों द्वारा व्यावसायिक उद्देश्य के लिए किया जा रहा है।

संपूर्ण कॉर्पोरेट नेटवर्क में आईटी (IT) से संबंधित संगठनों के नियंत्रण के बाहर आईएम (IM) का अभिग्रहण उन कंपनियों के लिए जोखिम और दायित्व उत्पन्न करता है जो प्रभावी रूप से आईएम (IM) के उपयोग का संचालन एवं समर्थन नहीं करती। इन जोखिमों को कम करने और कर्मचारियों को सुरक्षित, सुनिश्चित, लाभदायक त्वरित संदेश भेजने की क्षमताएं प्रदान करने के लिये कंपनियां विशेष आईएम संग्रह एवं सुरक्षा उत्पाद और सेवाएं लागू करती हैं।

उत्पादों की समीक्षा: आईएम (IM) उत्पादों को विशेष रूप से दो प्रकारों में वर्गीकृत किया जा सकता है: इंटरप्राइज इंस्टेंट मेसेजिंग (ईआईएम) एवं उपभोक्ता इंस्टेंट मेसेजिंग (सीआईएम)। इंटरप्राइज सॉल्यूशंस एक आंतरिक आईएम सर्वर का उपयोग करते हैं, हालांकि यह हमेशा संभव नहीं होता, विशेष रूप से सीमित बजट वाले छोटे व्यवसायों के लिए। सीआईएम (CIM) का उपयोग करने वाला दूसरा विकल्प, लागू करने पर सस्ता होने का लाभ प्रदान करता है और इसके लिए नए हार्डवेयर या सर्वर सॉफ्टवेयर में निवेश करने की बहुत कम जरूरत होती है।

कॉपरिट उपयोग के लिये, सुरक्षा संबंधी चिंताओं के कारण आमतौर पर कूटलेखन और वार्तालाप संग्रह को महत्वपूर्ण विशेषताओं के रूप में माना जाता है। कभी-कभी संगठनों में विभिन्न संचालन प्रणालियों ऑपरेटिंग सिस्टमों का उपयोग करने के लिए उस सॉफ्टवेयर का उपयोग करने की मांग होती है जो एक से अधिक प्लेटफॉर्म को सहायता प्रदान करता है।

जोखिम और दैयताएं: हालांकि त्वरित संदेश प्रेषण (इंस्टेंट मेसेजिंग) प्रणाली से कई लाभ प्राप्त होते हैं पर यह कुछ जोखिम और दायित्व का भी वहन करती है, विशेष रूप से जब इसका इस्तेमाल कार्यस्थलों पर किया जाता है। इन जोखिमों और दायित्वों में निम्नलिखित शामिल हैं:

- सुरक्षा संबंधी जोखिम (उदाहरण: कम्प्यूटरों को स्पाईवेयर, वायरसों, ट्रोजन्स, वर्म्स से संक्रमित करने के लिए आईएम का इस्तेमाल)
- अनुपालन संबंधी जोखिम
- अनुचित उपयोग
- व्यापार संबंधी रहस्य का प्रकटन

त्वरित संदेश (इंस्टेंट मेसेजिंग) (आईएम) प्रदान करने वाले कुछ प्रमुख उत्पाद: ट्विटर/अनुवादित अस्थायी लेख ट्विटर पक्षी का प्रतीक चिह्न अक्सर वेबसाइट पर देखा जाता हैं। ट्विटर एक मुक्त सामाजिक नेटवर्किंग और सूक्ष्म-ब्लॉगिंग सेवा है जो अपने उपयोगकर्ताओं को अपनी अद्यतन जानकारियां, ट्वीट्स के रूप में भेजी जातीं हैं, एक से अधिक को भेजने और पढ़ने की सुविधा देता है।

ऍग्रीगेटर: ऍग्रीगेटर सम्पादनकंप्यूटिंग यानि संगणन में फीड एग्रीगेटर, जिसे फीड रीडर, न्यूज़ रीडर या साधारणतः एग्रीगेटर कहा जाता है यह एक डेस्कटॉप या वेब अनुप्रयोग होता है जो कि इंटरनेट पर मुहैया सिंडीकेटेड मसौदे, मसलन समाचार सुर्खियाँ, ब्लॉग, पॉडकास्ट और व्लॉग का संकलन कर एक ही स्थान पर उसे प्रदर्शित करता है।

एमएसएन (MSN): मूल रूप से माइक्रोसॉफ़्ट नेटवर्क इंटरनेट साइटों और माइक्रोसॉफ़्ट द्वारा प्रदान की गई सेवाओं का एक संग्रह है। माइक्रोसॉफ़्ट नेटवर्क की शुरुआत, 24 अगस्त 1995 को 95 विंडोज ऑपरेटिंग सिस्टम के रिलीज के साथ मेल खाना करने के लिए, एक ऑनलाइन सेवा और इंटरनेट सेवा प्रदाता के रूप में हुई।

एसएमएस भाषा: एसएमएस भाषा अथवा एसएमएस की भाषा अथवा एसएमएस वाली भाषा (अन्य नाम: टीएक्सटी, टेक्स्ट, चैट-स्पीक, एसएमएस लैंग्वैज आदि) सामान्यतः मोबाइल में भेजे जाने वाले पाठ संदेश के लिए काम में लिया जाने वाला कठबोली शब्द है। कभी-कभी यह शब्द ई-मेल अथवा इंस्टेंट मेसेजिंग के लिए भी काम में लिया जाता है।

एओएल इंस्टैंट मैसेंजर : एक इंस्टैंट मैसेजिंग एवं प्रेसेन्स कंप्यूटर प्रोग्राम है।

तुल्यकालिक कॉन्फ्रेन्सिंग: कंप्यूटर द्वारा संचार का एक साधन है। इसके कई प्रकार होते हैं:-. संगणक द्वारा संचार: संगणक द्वारा संचार के कई साधन हो सकते हैं। इनमें से कुछ प्रमुख इस प्रकार से हैं:-. संक्षिप्त सन्देश सेवा, स्काइप, हाइक मैसेंजर, जीपीआरऍस, वाइबर एवं गूगल

काट्सएप : वाट्सऐप मैसेंजर, स्मार्ट फोनों पर चलने वाली एक प्रसिद्ध तत्क्षण मेसेजिंग सेवा है। इसकी सहायता से इन्टरनेट के द्वारा दूसरे 'वाट्सऐप' उपयोगकर्ता के स्मार्टफ़ोन पर टेक्स्ट संदेश के अलावा ऑडियो, छवि, वीडियो तथा अपनी स्थिति (लोकेशन) भी भेजी जा सकती है। दुनिया भर में 2 अरब से ज्यादा व्हाट्सएप उपयोगकर्ता हैं। लगभग1.6 अरब व्हाट्सएप उपयोगकर्ता मासिक आधार पर ऐप का उपयोग करते हैं। व्हाट्सएप 180 से अधिक देशों और 60 विभिन्न भाषाओं में उपलब्ध है तथा यह विश्व का दूसरा सबसे लोकप्रिय तत्क्षण मैसेंजर है। फेसबुक इंक ने 19 फ़रवरी 2014 को, माउंटेन व्यू, कैलिफोर्निया में स्थित वाट्सऐप इंक. को लगभग 19 अरब डॉलर में लिए खरीद लिया था। "व्हाट्सएप" (व्हाट्सएप) दुनिया भर के उपयोगकर्ताओं को संदेश, इंटरनेट कॉलिंग और अन्य सेवाएं प्रदान करता है। निम्न वर्णित प्रमुख सेवाएँ हैं:

सरल, विश्वसनीय संदेश: इससे अपने मित्रों और परिवार को निःशुल्क संदेश दें सकते हैं। समूह बात चीत (संपर्क में रहने के लिए समूह): उन लोगों के समूहों के साथ संपर्क में रहें जो आपके परिवार या सहकर्मियों की तरह सबसे ज्यादा मायने रखते हैं। समूह चैट के साथ, आप एक साथ 256 लोगों तक संदेश, फोटो और वीडियो साझा कर सकते हैं। आप अपने समूह को नाम भी दे सकते हैं, सूचनाएं म्यूट या अनुकूलित कर सकते हैं, इत्यादि।

काट्सएप वेब और डेस्कटॉप पर: वेब और डेस्कटॉप पर व्हाट्सएप के साथ, आप अपने चैट को अपने कंप्यूटर पर आसानी से सिंक कर सकते हैं ताकि आप जो भी डिवाइस आपके लिए सबसे सुविधाजनक हो उस पर चैट कर सकें।

व्हाट्सएप वॉयस और वीडियो कॉल: स्वतंत्र रूप से बोलें, वॉयस कॉल के साथ, आप के लिए अपने मित्रों और परिवार से बात कर सकना काफी आसान हो गया है, भले ही वे किसी दूसरे देश में रह रहे हैं।

एंड-टू-एंड एन्क्रिप्शन: डिफ़ॉल्ट रूप से सुरक्षा, ऐप के नवीनतम संस्करणों में एंड-टू-एंड एन्क्रिप्शन बनाया गया है। जब एंड-टू-एंड एन्क्रिप्ट किया जाता है, तो आपके संदेश और कॉल सुरिक्षत होते हैं, इसलिए केवल आप और आप जिस व्यक्ति के साथ संवाद कर रहे हैं, उन्हें पढ़ या सून सकते हैं, और बीच में कोई भी, व्हाट्सएप भी नहीं।

तस्वीरें और वीडियो: क्षणों को साझा करें, व्हाट्सएप पर तुरंत फोटो और वीडियो भेजें जा सकते हैं।

वॉइस संदेश: अपने मन की बात कहो, कभी-कभी, आपकी आवाज यह सब कहती है। सिर्फ एक टैप से आप वॉयस मैसेज रिकॉर्ड कर सकते हैं, एक त्वरित हैलो या लंबी बात के लिए एकदम सही है। दस्तावेज़: दस्तावेज़ साझा करना आसान है, ईमेल या फ़ाइल साझाकरण ऐप्स की परेशानी के बिना PDF फाइल, दस्तावेज़, स्प्रेडशीट, स्लाइडशो और बहुत कुछ भेजें जा सकते हैं। आप 100 एमबी तक के दस्तावेज़ भेज सकते हैं।

व्हाट्सएप की नई डेटा गोपनीयता नीति: अब 08 फरवरी 2021 को इंस्टैंट मैसेजिंग एप व्हाट्सएप नई डेटा गोपनीयता नीति ला रहा है। इसके बाद से दुनियाभर में व्हाट्सएप को कड़ी आलोचनाओं का सामना करना पड़ रहा है। नए अद्यतनीकरण (अपडेट) के मुताबिक, व्हाट्सएप उपयोगकर्ता डेटा को फेसबुक की अन्य कंपनियों के साथ

सांझा करेगा। व्हाट्सएप पर यह भी आरोप है कि अपनी वर्ग का वह इकलौता ऐसा एप है जो उपयोगकर्ता से सबसे ज्यादा डेटा लेता है, लेकिन इसी बवाल और हंगामे के बीच व्हाट्सएप ने कहा है कि वह उसकी नई सेवा शर्तों से निजी चैट रत्ती भर भी प्रभावित नहीं होंगे।

व्हाट्सएप का कहना है कि, 'नए अपडेट से व्हाट्सएप के जिरए खरीददारी और व्यापार करना पहले के मुकाबले काफी आसान हो जाएगा। अधिकतर लोग आज व्हाट्सएप का इस्तेमाल चैटिंग के अलावा बिजनेस एप के तौर पर भी कर रहे हैं। हमने अपनी प्राइवेसी पॉलिसी को बिजनेस के लिए एक सुरक्षित होस्टिंग सर्विस के तौर पर अपडेट किया है ताकि छोटे कारोबारियों को व्हाट्सएप के जिरए अपने ग्राहकों तक पहुंचने में आसानी हो। इसके लिए हम अपनी पैरेंट कंपनी फेसबुक की भी मदद लेंगे।'

व्हाट्सएप के एक प्रवक्ता ने यह भी कहा कि इस अपडेट से उपयोगकर्ता की गोपनीयता भंग नहीं होगी। कंपनी आज भी उपयोगकर्ता की गोपनीयता को लेकर प्रतिबद्ध है। नए अपडेट से फेसबुक और व्हाट्सएप के बीच डेटा शेयिरेंग को लेकर कोई बदलाव नहीं होने जा रहा है।

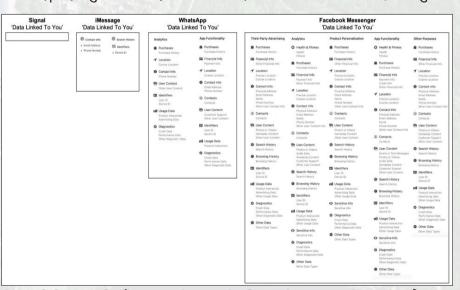
अपडेट में कहा गया कि व्हाट्सएप की सर्विस जारी रखने के लिये उपयोगकर्ता को 8 फरवरी, 2021 तक नई डेटा शेयरिंग पॉलिसी को मानना ही होगा या वे एप्प को अनइंस्टॉल कर सकते हैं। तो आइए जानते हैं कि क्या है व्हाट्सएप की नई पॉलिसी और आपके पास क्या विकल्प मौजूद हैं:

व्हाट्सएप की नई पॉलिसी में क्या है?: हाल ही में लाखों भारतीय उपयोगकर्ता को व्हाट्सएप की नई प्राइवेसी पॉलिसी और सेवा शर्तों को लेकर अधिसूचना (नोटिफिकेशन) मिली है जो कि आठ फरवरी से लागू हो रही हैं। इन शर्तों में कहा गया है कि व्हाट्सएप पहले के मुकाबले अपनी मूल कंपनी फेसबुक के साथ अधिक डेटा सांझा करेगा जिसका इस्तेमाल विज्ञापनों में होगा। यदि आठ फरवरी तक कोई उपयोगकर्ता नई शर्तों को स्वीकार नहीं करता है तो उसके अकाउंट को बंद कर दिया जाएगा। एक्सपर्ट का कहना है कि यह सीधे तौर पर लोगों की निजता पर हमला है और उन्हें शर्तों को मानने के लिए मजबूर किया जा रहा है। बता दें कि एपल एप स्टोर पर लिस्टिंग के मुताबिक व्हाट्सएप अपने उपयोगकर्ता से 16 तरह का डेटा लेता है।

क्या है नए व्हाट्सएप अद्यतनीकरण (अपडेट) में?: नए अपडेट में लिखा है, 'व्हाट्सएप अपनी शर्तों और प्राइवेसी पॉलिसी को अपडेट कर रहा है। मुख्य अपडेट में व्हाट्सएप की सर्विस, डेटा को प्रोसेस करने, फेसबुक की अन्य सर्विस के व्हाट्सएप चैट को स्टोर व मैनेज करने और व्हाट्सएप फेसबुक के साथ मिलकर किस प्रकार फेसबुक कंपनी के प्रोडक्ट्स के बीच एकीकरण करेगा।' इसमें आगे लिखा है, 'AGREE' पर टैप करके आप 8 फरवरी 2021 से लागू होने वाली नई शर्तों और प्राइवेसी पॉलिसी को स्वीकार करें। अगर आप अपना अकाउंट डिलीट करना चाहते हैं या ज्यादा जानकारी चाहते हैं तो 'Help Center' पर जा सकते हैं।'

नई पॉलिसी का मतलब है कि व्हाट्सएप के पास आपका जितना भी डेटा है, वह अब फेसबुक की दूसरी कंपनियों के साथ भी सांझा किया जाएगा। इस डेटा में लोकेशन की जानकारी, IP एड्रेस, टाइम जोन, फोन मॉडल, ऑपरेटिंग सिस्टम, बैटरी लेवल, सिग्नल स्ट्रेन्थ, ब्राउजर, मोबाइल नेटवर्क, ISP, भाषा, टाइम जोन और IMEI नंबर शामिल हैं। इतना ही नहीं, आप किस तरह मैसेज या कॉल करते हैं, किन ग्रुप्स में जुड़े हैं, आपका स्टेटस, प्रोफाइल फोटो तक सांझा किया जाएगा।

कंपनी का कहना है कि इस डेटा का उपयोग विश्लेषण संबंधी उद्देश्य के लिए किया जाएगा। यानि कि फेसबुक के पास पहले से ज्यादा डेटा का एक्सेस होगा और फेसबुक की अन्य कंपनियां इसका इस्तेमाल आप तक अपने उत्पादों की पहुंच के लिए करेंगी। ऐसे दौर में जब डेटा एक उपयोगी चीज बन गया है, इसे सांझा करके फेसबुक और उसकी कंपनियां बड़ा लाभ कमाना चाहती हैं। ध्यान रहे फेसबुक का 90% राजस्व विज्ञापनों से आता है।


क्या व्हाट्सएप डिलीट करने से बनेगी बात? : अगर आप अपना डेटा सांझा नहीं करना चाहते तो फोन से ऐप अनइंस्टॉल करने का विकल्प चुन सकते हैं। हालांकि, इसका यह मतलब बिलकुल नहीं है कि आपका जितना भी डेटा संचित (स्टोर) किया गया है वह तुरंत डिलीट हो जाएगा। व्हाट्सएप पर यह लंबे समय तक स्टोर रखा रह सकता है। व्हाट्सएप के मुताबिक, 'जब भी अकाउंट डिलीट करें तो ध्यान रखें कि आपके द्वारा बनाए गए ग्रुप्स की जानकारी या अन्य लोगों के साथ की गई आपकी चैट जैसी जानकारी को प्रभावित नहीं करता है।'

क्या है विकल्प: बता दें कि व्हाट्सएप की नई प्राइवेसी पॉलिसी 8000 शब्दों से भी ज्यादा लंबी है और इसमें इस प्रकार के कानूनी शब्दों का इस्तेमाल किया गया है कि एक आम आदमी को आसानी से समझ में ना आए। ऐसे में अगर आप व्हाट्सएप के नए नियमों को स्वीकार नहीं करना चाहते तो बेहतर होगा कि आप सिग्नल मेस्सेंजर (Signal messenger) जैसे किसी अन्य एप्प का इस्तेमाल कर लें।

यहां दिये गए चित्र से देख सकते हैं कि किस हद तक आपके डेटा का उपयोग कंपनियाँ अपने निजी लाभ के लिए करती हैं, इनमें फेसबुक सबसे ज्यादा डेटा का उपभोग करती है:

निष्कर्ष: त्वरित संदेश (इंस्टेंट मेसेजिंग) (आईएम) एक बहुत सुविधाजनक संचार व्यवस्था है जो की बहुतता से उपयोगकर्ताओं द्वारा इस्तेमाल की जाती है। यह बहुत सी सेवाएँ प्रदान करती है जिससे उपयोगकर्ताओं द्वारा बहुत से

व्यक्तिगत डेटा का आदान प्रदान होता है जो कि सर्वर पर संचित (स्टोर) होता है। हालांकि सभी उत्पाद एवं कंपनियाँ डेटा की गोपनीयता का दावा करतीं हैं; पर इनमें आपस में डेटा की साझेदारी देखकर उपयोगकर्ता की भी ज़िम्मेदारी बनती है कि वो अपने व्यक्तिगत डेटा की सुरक्षा के प्रति सजग रहे एवं बिना ध्यान से समझे किसी भी नीति को सहमति न प्रदान करे।

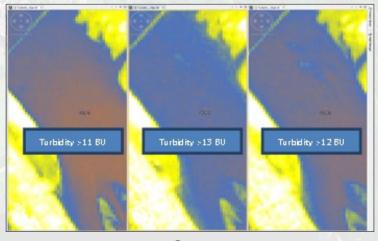
एकबार डेटा सर्वर पर चला गया तो वह विभिन्न कंपनियाँ द्वारा उनके लाभ के लिए अनेक प्रकार से उपयोग मैं लाया जा सकता है एवं उसकी गोपनीयता से समझौता हो सकता है। अब नयी गोपनीयता नीति में डेटा की और अधिक साझेदारी की बात करी गए है अतः उपयोगकर्ताओं को बड़ी सावधानी एवं सूझबूझ से तथा नयी गोपनीयता नीति को भली भांति जानकार व समझकर ही इन सॉफ्टवेर का चयन एवं उपयोग करना होगा।

कुंभ उत्सव के दौरान इलाहाबाद क्षेत्र में गंगा नदी के कुछ हिस्सों में जल आविलता का आकलन

अंजु बाजपेयी, आरआरएससी (मध्य), नागपुर

सार: आविलता को पानी की अपारदर्शिता के रूप में परिभाषित किया जाता है। पानी में कुल ठोस की मात्रा जितनी अधिक होगी, मापी गई आविलता उतनी ही अधिक होगी। आविलता के उद्गम के कारणों में मिट्टी का क्षरण, अपिशृष्ट निर्वहन, शहरी अपवाह और शैवाल विकास शामिल हैं। आविलता को निलंबित या कोलाइडी कणों की उपस्थित के कारण पानी में स्पष्टता की कमी के रूप में भी परिभाषित किया गया है। कुंभ मेले जैसे आयोजनों के दौरान आविलता की निगरानी अत्यंत महत्वपूर्ण हो जाती है जिसके कारण आविलता नदी में अचानक वृद्धि होती है।

सुदूर संवेदी पश्च प्रकीर्णन (Backscatter) इकाइयों के संदर्भ में पानी की आविलता का एक ऑप्टिकल उपाय प्राप्त करता है। उपग्रह से दूर से महसूस की गई छवि में बड़े क्षेत्रों के अध्ययन, वर्तमान और परिसंचरण पैटर्न के निर्धारण, और तलछट, जल उत्पादकता और सुपोषण (eutrophication) की निगरानी के लिए काफी लाभ प्रदान करने के लिए महत्वपूर्ण जानकारी प्रदान करने की क्षमता है। विश्व स्वास्थ्य संगठन ने प्रतिस्थापित किया है कि पीने के पानी की आविलता 5

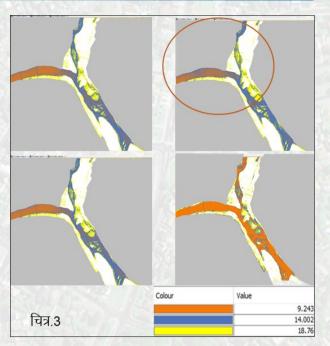

8 MARCH 2018; CARTOSAT 2E MERGED

15 JANUARY 2019: CARTOSAT 2E

चित्र.2

एनटीयू से अधिक नहीं होनी चाहिए, और आदर्श रूप से 1 एनटीयू से नीचे होनी चाहिए।लेकिन इलाहाबाद से होकर बहने वाली गंगा नदी कुंभ मेला आयोजन के दौरान 13-14 बीयू तक अचानक आविलता में वृद्धि दिखाती है। आविलता के परिणामस्वरूप मछली और अन्य जलीय जीवों के आवास क्षेत्रों को नुकसान पहुंचता है। आविल कण अन्य प्रदूषकों, विशेष रूप से धातुओं और बैक्टीरिया के लिए जुड़ाव स्थान भी प्रदान करते हैं जो पानी को दूषित बनाने में बहुत मददगार है और पानी के पीने के लिए उपयुक्त नहीं।

प्रस्तावना: कुंभ पर्व हिंदू धर्म का एक प्राचीन पर्व है, जिसमें करोड़ों श्रद्धालु कुंभ पर्व स्थल प्रयाग, हिरद्वार, उज्जैन और नासिक में स्नान करते हैं। गंगा नदीं में पिवत्र स्नान भारत में आस्था का सबसे शुभ कार्य माना जाता है। यह एक बहुत ही प्राचीन त्यौहार है, जिसका नाम तीसरी शताब्दी ईसा पूर्व में अशोक द्वारा निर्मित इलाहाबाद स्तंभ (अशोक स्तंभ) में माघ मेला नाम से अंकित है। यह मेला गंगा, यमुना और पौराणिक सरस्वती निदयों के पिवत्र संगम स्नान करने के लिए लगभग 48 दिनों की अविध में



चित्र.2

लाखों तीर्थयात्रियों को खींचता है। 2019 में मेले के दौरान, 6 स्नान दिवसों (14 जनवरी/14 जनवरी/10 फरवरी/19 फरवरी/04 मार्च, 2019) में से प्रत्येक दिवस पर 2.0-2.5 करोड़ लोगों की भीड़ का अनुमान लगाया गया था। लेकिन पवित्र स्नान के दिनों में इतनी भारी भीड़ जुट जाने से नदी किनारों से मिट्टी का कटाव बढ़कर पानी में घुलने से क्षेत्र के पानी की गुणवत्ता पर काफी बुरा असर पड़ता है। ऐसे त्योहारों का प्राथमिक प्रभाव गंगा तथा यमुना नदी के

पानी की आविलता पर पड़ता है। बाद में, यह नदी पारिस्थितिकी तंत्र को प्रभाव देता है और पीने के जल स्त्रोत (3,4,7 में उल्लेख) के प्रदूषण को बढ़ाता है।

2. उपयुक्त डाटा: सेंटिनल 2 आंकड़ों का उपयोग कुंभ मेला 2019 के दौरान इलाहाबाद क्षेत्र में गंगा नदी की समयबद्ध डाटा को प्राप्त करने के लिए किया गया है। संगम क्षेत्र से ठीक पहले गंगा नदी के किनारे बड़ी संख्या में बस्तियां स्थापित की गई थीं। संगम क्षेत्र से ठीक पहले गंगा नदी के किनारे बड़ी संख्या में बस्तियां स्थापित की गई थीं। चित्र 1 में 8 मार्च 2018 (कुंभ से पहले) और 15 जनवरी 2019 (कुंभ के दौरान) किए गए अस्थायी आधारिक संरचना को गंगा नदी के किनारे में दिखाया गया है जो कि LISS IV और कार्टोसैट 2E डेटा का उपयोग करके पाया गया।

3. सिद्धांत और सूत्र: जल के भौतिक और रासायनिक घटक जो उपग्रह सेंसर द्वारा प्राप्त किए गए ऊर्जा स्तर को प्रभावित करते हैं, वो रंग और आविलता हैं। पानी के रंग और आविलता में अंतर आने में उपग्रह संकेत प्रभावित होते

	Date	Turbidity(BU)
Makar Sankranti	9/01/2019	11.67
	→ 14/01/2019	13.29
	19/01/2019	11.73
	29/01/2019	8.65
After Basant Panchami	→ 13/02/2019	9.65
	23/02/2019	7.12
After	28/02/2019	8.28
Mahashivratri	10/03/2019	8.47

है, ख़ास तौर पर पराबैंगनी और अवरक्त तरंग-दैर्ध्य (infra-red wavelength) में। पानी के रंग में वृद्धि का एक सेंसर पर विकिरण पहुंचते हुए कम होता जाता है, क्योंकि सूर्य की ऊर्जा की काफ़ी मात्रा पानी में ही अवशोषित हो जाती है। आविलता में वृद्धि से उपग्रह सुदूर संवेदी संवेदक तक पहुंचने वाली ऊर्जा प्रवाह बढ़ जाती है, क्योंकि अधिक सौर विकिरण आविल कणों द्वारा परिलक्षित या पाश्च प्रकीर्णन (back scatter) किया जाता है। यदि पानी की सतह तक पहुंचने वाली सौर ऊर्जा का प्रतिनिधित्व । द्वारा किया जाता है, तो:

 $I_{o} = I_{SR} + I_{A} + I_{B}$ (1)

जहां I_{SR} सौर प्रवाह है जो पानी की सतह पर स्पेकुलरली रूप से परिलक्षित होता है, I_A पानी द्वारा अवशोषित प्रवाह है, और I_B पानी की सतह पर बैकस्कैटर है और जो इस प्रकार रिमोट सेंसर के लिए उपलब्ध है।परिभाषा के अनुसार स्पेकुलर प्रतिबिंब सभी तरंगदैर्ध्य पर बराबर है, लेकिन अवशोषण और पश्च प्रकीर्णन विशिष्ट स्पेक्ट्रल हस्ताक्षर उत्पन्न करते हैं। पानी की सतह से स्पेकुलर प्रतिबिंब को सूर्य ग्लेज़ के रूप में भी जाना जाता है। सौर ऊर्जा का प्रतिशत जो स्थिर जल से परिलक्षित होता है वह सूर्य-उन्नयन कोण पर निर्भर करता है (तालिका 1 देखिए):

सूर्य ग्लेज़ केवल मापे हुए विकिरण की तीव्रता बदलता है; सापेक्ष स्पेक्ट्रल हस्ताक्षर केवल थोड़ा प्रभावित होता है।सूरज की चमक से सुदूर संवेदन संकेतों में नॉईस लाता है, लेकिन पूर्ण आविलता गणना के लिए सुधार की जरूरत नहीं है क्यूंकि ये एक प्रभाव को हटा देता है।

तालिका -1				
dii	लका -1			
सौर तुंगता कोण	परावर्तन का प्रतिशत			
Horizon(0°)	100%			
5°	58%			
10°	35%			
20°	13%			
30°	6%			
40°	3.4%			
50°	2.1%			
90°	2.0%			
30	2.070			

प्रकाश की कुछ तरंगदैर्ध्य दूसरे की तुलना में अधिक अवशोषित होते हैं। गहरे साफ पानी में, अवशोषित प्रकाश सतह के 0.2 मीटर तक की गहराई से होता है, और लाल बैंड पूरी तरह से 2 मीटर की गहराई तक अवशोषित हो जाता है। किसी भी तरंगदैर्ध्यऔर किसी भी गहराई पर शेष प्रकाश समीकरण से गणना की जा सकती है:

$$I = I_S / e^{KX}$$
 (2)

जहां । पानी की सतह में प्रवेश करने वाला विकिरण है, X गहराई है, और k विकिरण विलुप्त होने का गुणांक है। साफ पानी में स्कैटरिंग अणुओं के कारण होता है और वेवलेंथ पर निर्भर है। इसे रेले स्कैटरिंग भी कहते हैं और यह उस प्रक्रिया के समान है जो आकाश को नीला करती है।

लगभग 2 प्रतिशत विकिरण ही गहरे पानी से बैकस्कैटर होता है। पाश्च प्रकीर्णित ऊर्जा का हिस्सा जो पानी की सतह पर मापा जाता है, सुदूर संवेदन द्वारा पता लगाया जाता है।साफ गहरे पानी में नीली रोशनी के लिए सिग्नल का 50 फीसदी हिस्सा 15 मीटर की गहराई से आता है, जबकि रेड लाइट के लिए ज्यादातर सिग्नल करीब 11 मीटर से कम गहराई से आता है।

4. कार्यप्रणाली: भू-स्थानिक पैटर्न प्राप्त करने के लिए समय श्रृंखला आविलता मैपिंग भी आविलता के पीओआई आधारित इन-सीटू मापों का उपयोग करके किया जा सकता है। इस अध्ययन में हमने सैटेलाइट डेटा आधारित आविलता असेसमेंट का प्रयास किया है। सामान्यीकृत अंतर आविलता इंडेक्स जैसे कई सूचकांकों का उपयोग ऐसे अध्ययनों के लिए भी किया जाता है।लेकिन वे आविलता को उसके निरपेक्ष मूल्यों से नहीं जोड़ सकते है। सबसे पहले, वायुमंडलीय सुधार करने हेतु, दृश्य पर आधारित डार्क ऑब्जेक्ट घटाव विधि का उपयोग करके किया गया था। बाद में सेंटिनल-2 डेटा प्रोसेसिंग के लिए स्नैप टूलबॉक्स का उपयोग करके, आविलता की गणना ऑप्टिकल बैंड (मुख्य रूप से रेड बैंड)^{15,61} का उपयोग करके की गई थी।इस प्रकार मापन की इकाई बीयू (बैकस्केटरिंग यूनिट) मानी जायेगी क्यूंकि हम जल की पाश्च प्रकीर्णन को भी ऑप्टिकल डाटा में देखते हैं।

कुंभ मेला 14 जनवरी से 4 मार्च 2019 तक मनाया गया। जल आविलता स्तर का आकलन करने के लिए सेंटिनल 2 डेटा का इस्तेमाल किया गया।क्लाउड कवर के कारण, आठ उपग्रह दृश्य (9/1/2019, 14/1/2019, 19/1/2019, 29/1/2019, 13/2/2019, 23/2/2019, 28/2/2019,10/3/2019) तिथियों का उपयोग इस अध्ययन में किया है।

निदयों में जल की आविलता का अवलोकन: कुंभ में पहुंचने वाले अधिकांश तीर्थ यात्री गंगा नदी में डुबकी लगाते हैं। इस प्रकार, एक बड़े पैमाने पर इस जमावड़े का पहला दुष्प्रभाव पानी की आविलता में परिवर्तन होता है। आविल पानी से उपग्रह तक पहुंचने वाले पाश्च प्रकीर्णन अनुपात में वृद्धि होने की संभावना रहती है। इस सिद्धांत का प्रयोग लाल तरंग दैर्ध्य पर सेंटिनल-2 डेटा में किया जाता है। चित्र 2 में, 9 से 19 जनवरी 2019 के दौरान ही एक स्थान में आविलता के आंकड़ों में बदलाव देखा गया है।

यह कार्य अन्य महत्वपूर्ण दिनों के लिए किया गया और प्राप्त आविलता आंकड़ों के परिणाम चित्र 3 में दिखाए गए हैं। उल्लेखनीय है कि मकर संक्रांति के दिन आविलता सबसे अधिक थी। उसके बाद 'मेले' के अंत तक आविलता में कई छोटी छोटी ऊँचाइयाँ देखने को मिली हैं। यह प्रयागराज के पवित्र स्नान दिवस और पहुंचने वाले तीर्थयात्रियों की संख्या से मेल खाती है, जो जनवरी के दौरान अधिकतम था (संगम क्षेत्र में स्नान करने के लिए सबसे बड़ी भीड़) और बाद में

Mahashivratri
04 March 2019,
Monday

ornima

19 Feb 2019,

Tuesday

(3rd Shahi Snan) 10 Fab 2019.

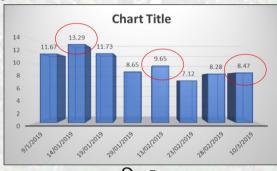
Sunday

Basant Panchami Mauni Amavasya (2nd Shahi Snan) 04 Fab 2019,

Monday

21 Jan 2019, Monday

Paush Poornima


Makar Sankranti (1st Shahi Snan) 15 Jan 2019, Tuesday

चित्र.4

बसंत पंचमी और महाशिवरात्रि दिनों में भी इसी तरह के उच्च पैटर्न से आविलता फिर से बढी हुई पायी गयी (चित्र 6)। 5. **परिणाम :** चित्र 4 में कम्भ मेले के महत्त्वपूर्ण दिनों का पंचांग प्रस्तत है–

विभिन्न तिथियों पर उपग्रह से प्राप्त आंकडों के अनुसार नीचे दिया गए तीन रुझान देखे गए जो ऐसी घटनाओं के कारण आविलता में अचानक वृद्धि को दर्शाते हैं।

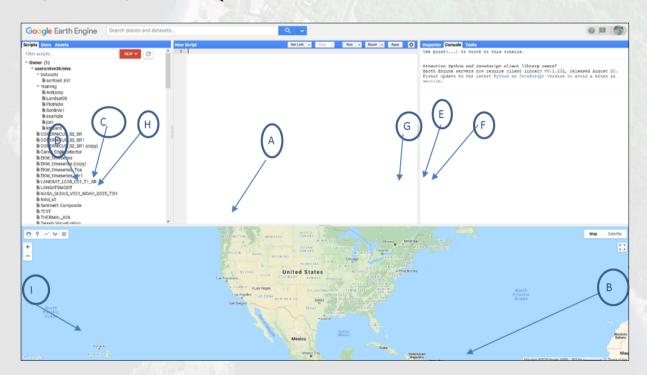
गंगा नदी के मध्य भाग में आविलता मूल्य 9 जनवरी, 2019 (कुंभ शुरू होने से पहले) 11.67 बीयू के आसपास था, जो मकर संक्रांति (14 जनवरी 2019) को बदलकर 13.29 बीयू हो गया

और 19 जनवरी 2019 को वापस 11.73 बीयू (घटना के बाद) के रूप में आंकड़ा चित्र 5 और 6 में दिखाया गया है।

गंगा नदी के मध्य भाग में आविलता मूल्य 29 जनवरी 2019 (बसंत पंचमी से पहले) को लगभग 8.65 बीयू था, जो बसंत पंचमी (13 फरवरी 2019) के ठीक बाद में 9.65 बीयू में हो गया और 23 फरवरी 2019 (घटना के बाद) को वापस 7.12 बीयू हो गया। गंगा नदी के मध्य भाग में आविलता मूल्य 23 फरवरी को घटकर 7.12 बीयू हो गया था जो फिर से माघ पूर्णिमा के बाद (28 फरवरी 2019) को बढ़कर 8.28 बीयू हो गया और 10 मार्च 2019 (महाशिवरात्रि के बाद) भी 8.47 बीयू तक बढ़ा हुआ पाया गया है।

- **6. निष्कर्ष :** यह देखा गया है कि उपग्रह डेटा प्रसंस्करण का उपयोग करके मापा गया कुंभ मेला 2019 के दौरान नदी के पानी में उल्लेखनीय वृद्धि देखी गई है। इस प्रकार, कुंभ मेले के दौरान जल प्रदूषण और जल गुणवत्ता क्षरण में भारी वृद्धि और इस तरह की घटनाओं से बचने के लिए, इस तरह की घटनाओं में अधिक नियंत्रण तंत्र लाना अत्यंत महत्वपूर्ण है क्योंकि यह नदी के पारिस्थितिकी तंत्र को गहराई से प्रभावित करता है और इस अवधि में पेयजल स्रोत को प्रदूषित बनाता है।
- 7. परिसीमन: इस विधि में ऑप्टिकल बैंड (यानी रेड बैंड) का उपयोग किया जाता है और इसलिए हमें बादल वाले दिनों के लिए आविलता मान नहीं मिल सकते हैं।लेकिन फिर भी, उच्च लौकिक संकल्प के साथ, पवित्र स्नान की महत्वपूर्ण तिथियों के अधिकांश पर कब्जा कर लिया गया ।इसके अलावा, सटीकता वायुमंडलीय सुधार [8] पर निर्भर है। आविलता वैल-यूईएस का सत्यापन फील्ड इंस्ट्रमेंट्स की मदद से भी किया जा सकता है, जो कुंभ पर्व के समय फील्ड इंस्टू-मेंट्स की कमी के कारण इस अध्ययन में शामिल नहीं हो सके।

अभिस्वीकृति: लेखकों को प्रोत्साहित करने और समग्र मार्गदर्शन के लिए निदेशक, एनआरएससी का श्रुक्रिया अदा करना चाहते हैं। इस कार्य को क्षेत्रीय सुदूर संवेदन केंद्र - मध्य, नागपुर, राष्ट्रीय सुदूर संवेदन केंद्र से अनुदान द्वारा समर्थित किया गया था।



गूगल अर्थ इंजन कोड एडिटर – चित्र संसाधन (इमेज प्रोसेसिंग) उपकरण

निवेदिता सिन्हा आरआरएससी (पूर्व) , कोलकाता

परिचय: गूगल अर्थ इंजन एक क्लाउड आधारित भू-स्थानिक प्रसंस्करण सेवा है | जिसका उद्देश्य विशाल सुदूर संवेदन आंकड़ा समूहों (पेटाबाइट-स्केल पर) को संग्रहित और संसाधित करना है | गूगल ने मौजूदा सुदूर संवेदन मुफ्त उपग्रह डाटा (जैसे कि :-लैंडसेट/सेंटिनल/मोडिस) को संग्रह कर एक विशाल सुदूर संवेदन आंकड़ा समूह (पेटाबाइट-स्केल पर) तैयार किया है जिसका उपयोग सुदूर संवेदन वैज्ञानिक अपने अनुसंधान के लिए कर सकते है। गूगल अर्थ इंजन कोड एडिटर अर्थ इंजन पैथान/जावास्क्रिप्ट एपीआई के लिए एक वेब आधारित इंटीग्रेटेड डेवलपमेंट एडिटर है इस एडिटर का उपयोग कर वैज्ञानिक गूगल के पास मौजूद सुदूर संवेदन आंकड़ा को संसाधित या उसका विश्लेषण कर सकते है। कोड एडिटर के कुछ महत्वपूर्ण भाग इस प्रकार हैं

- A. कोड एडिटर: कोड एडिटर में जावास्क्रिप्ट या पाइथन में प्रोग्राम लिखा जा सकता है।
- B. मानचित्र प्रदर्शन: इस भाग में हम भू-स्थानिक डेटासैट को देख सकते हैं।
- C. **एपीआई संदर्भ प्रलेखन(डॉक्स टैब):** डॉक्स टैब में हम गूगल अर्थ इंजन में मौजूद फंक्शन के बारे में जान सकते हैं।
- D. स्क्रिप्ट टैब: स्क्रिप्ट टैब में हम गूगल में मौजूद या हमारे द्वारा लिखे प्रोग्राम या स्क्रिप्ट को देख सकते हैं।
- E. **कंसोल टैब:** कंसोल टैब में हम परिणाम को टैक्स्ट या ग्राफ के रूप में देख सकते हैं।
- F. **कार्य टैब:** इस टैब का उपयोग लंबे समय से चल रहे प्रश्नों/कार्यों को संभालने के लिए किया जाता है जैसे कि हमें परिणाम को अगर हमे गूगल ड़ाइव में भेजना है तो वो हम यहां से कर सकते हैं।
- G. **इंस्पेक्टर टैब:** इसमें हमें प्रोग्राम में अगर कोई गलती है तो वो प्रॉपर मेसेज के साथ दिखाई देती है ताकि हम उसे सुधार कर फिर से रन कर सकते हैं।
- H. **एसैट टैब:** इस टैब में हम पहले से सहेज कर रखी हुई वैक्टर/रैस्टर फाइल्स या पुराने कार्यों के परिणामों को देख सा उनका फिर से उपोग कर सकते हैं।

 ज्यामिति ड्रइंग उपकरण: इस टैब में कई सारे उपकरण मौजूद हैं जिसका उपयोग कर हम अपना रूचि का क्षेत्र (एरिया ऑफ इंटरेस्ट) पॉलिगॉन/ प्वॉइंट) खींच/बना सकेते हैं।

कोड एडिटर में जावा या पाइथन (कंप्यूटर भाषा) में स्क्रिप्ट लिखा जा सकता है और उन्हें संग्रह भी किया जा सकता है| कोड एडिटर से गूगल क्लाउड में संग्रहित डाटा उपयोग किया जा सकता है इसलिए इसमें काम करने के लिए हमें उपग्रह डाटा डाउनलोड करने या डाटा रखने के लिए विशाल कंप्यूटर स्टोरेज की आवश्यकता नहीं होती। साथ ही डाटा को संसाधित करने के लिए हाई एंड कंप्यूटर की भी जरुरत नहीं होती।

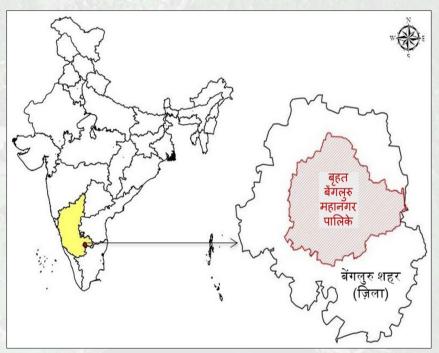
गुगल अर्थ इंजन कोड एडिटर के कुछ लाभ:

- 1. एक क्लाउड आधारित प्लेटफार्म है इसलिए इस में काम करने के लिए हमें बहुत हाई कंप्यूटर स्टोरेज/प्रोसेसर की आवश्यकता नहीं होती।
- 2. गूगल क्लाउड में पहले से ही उपग्रह ऑंकड़े मौजूद है इसलिए हमें उन्हें डाउनलोड करने की आवश्यकता नहीं होती।
- 3. इसके परिणाम को हम भविष्य के लिए सुरक्षित रख सकते है तथा उसे किसी भी अन्य बिम्ब संसाधन (इमेज प्रोसेसिंग) सॉफ्टवेयर में खोल कर देख सकते है|
- 4. इसमें काम करने से बहुत ही कम समय लगता है क्योंकि गूगल अर्थ इंजन में एक ही जगह विशाल उपग्रह आंकड़े हाई कंप्यूटिंग पावर, विशाल मुक्त स्त्रोत (ओपन सोर्स) स्क्रिप्ट मौजूद है जिसकी मदद से जटिल बिम्ब संसाधन प्रक्रिया को भी बड़े ही सानी से किया जा सकता है।

अनुप्रयोग: गूगल अर्थ इंजन कोड एडिटर का उपयोग हमने क्षेत्रीय सुदूर संवेदन केंद्र -पूर्व, कोलकाता में चल रहे कुछ अध्ययन /परियोजना के लिए किया और हमने यह पाया कि इसमें काम करना काफी सहज है और साथ ही काफी कम समय में काम पूरा किया जा सकता है | इसमें काफी आसानी से अन.डी. भी. आई/ई. भी. आई/अल. अस. टी जैसे बैंड मैथ गणना किया जा सकता है। परिवर्तन-पहचान या समय-श्रृंखला-विश्लेषण जैसे अध्ययन भी इस उपकरण की मदद से किया जा सकता है।

सन्दर्भ : https://developers.google.com/earth-engine/guides

मुंबई टोलगेट ऐरोली


भू-स्थानिक तकनीकों द्वारा बेंगलुरु शहर के वनस्पति आवरण का आकलन

शिवम त्रिवेदी आर.आर.एस.सी.-(दक्षिण), बेंगलुरू

परिचय: बेंगलुरु शहर 'गार्डन सिटी' के नाम से प्रसिद्ध है तथा अपने सुहावने मौसम और हरियाली के कारण विश्व में इसका एक अनूठा स्थान है। बेंगलुरु के लालबाग और कब्बन पार्क भारत के सबसे खूबसूरत वानस्पतिक बगीचों में शुमार हैं। अपने उद्यानों, विभिन्न संस्थानों और आई.टी. उद्योगों के लिए विख्यात यह भारत के सिलिकॉन सिटी के नाम से भी जाना जाता है। पिछले कुछ दशकों के दौरान बेंगलुरु में अभूतपूर्व शहरी विकास हुआ है, जिसके फलस्वरूप शहर के वनस्पति आवरण में काफी परिवर्तन आये हैं। शहरी वनस्पति और हरित स्थानों के अति-विशिष्ट एवं अमूल्य लाभ होते हैं और शहरों, उपनगरों और महानगरों के इलाकों में जीवन की गुणवत्ता बनाए रखने के लिए इनसे सम्बंधित मूलभूत ज्ञान बेहद आवश्यक है। प्रस्तुत अध्ययन में भूस्थानिक तकनीकों द्वारा बेंगलुरु शहर के वर्तमान वनस्पति आवरण का आकलन एवं पिछले दशक से आए परिवर्तनों का अध्ययन किया गया।

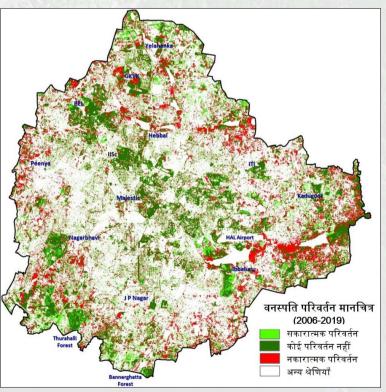
अध्ययन क्षेत्र: बेंगलुरु कर्नाटक राज्य की प्रशासनिक, वाणिज्यिक, औद्योगिक एवं ज्ञान-विज्ञान की राजधानी है, जिसे पहले बैंगलोर कहा जाता था। वर्ष 2006 एवं 2019 के बीच हुए वनस्पित परिवर्तनों के आकलन के लिए बेंगलुरु शहर के 712वर्ग किलोमीटर के क्षेत्र में फैले हुए बृहत बेंगलुरु महानगर पालिका (बी.बी.एम.पी.) की सीमा के अंदर 198 वार्डों का अध्ययन किया गया।

इस अध्ययन के लिए 2006 के आई.आर.एस.-1डी उपग्रह के पैन + रिसोर्ससैट -1 उपग्रह के लिस-॥ संविलीन (मर्ज) किये गए डेटा (6 मीटर) तथा 2019 के रिसोर्ससैट-2 उपग्रह के लिस-1V, बह-स्पेक्टमी डेटा (5.8 मीटर) के साथ अन्य सहायक डेटासेट का प्रयोग किया गया। स्टैंडर्ड डिजिटल वर्गीकरण एवं विश्लेषण में सहायता हेत् शहर के विभिन्न घनत्व वाले वनस्पति क्षेत्रों में फ़ील्ड तस्वीरों के साथ कुल 730 जिओ-टैग किये गए नम्ने भी एकत्रित किये गए। सघन वनस्पति (> 40% घनत्व) और मध्यम घनी वनस्पति (10 -40% घनत्व) को मुख्य वनस्पति

चित्र 1: अध्ययन क्षेत्र का स्थान मानचित्र - डेटासेट एवं कार्यविधि

घटकों के रूप में माना गया क्योंकि ये वृक्षों के आवरण से युक्त होते हैं, जबिक विरल (कम घनी) वनस्पित (<10% घनत्व) को मौसमी घास या अस्थायी वनस्पित आवरण माना गया, जिसका प्रतिनिधित्व मुख्य रूप से खाली भूखंडों / स्थलों पर होता है। इस कारण से विरल वनस्पित श्रेणी को परिवर्तन मूल्यांकन के लिए नहीं शामिल किया गया। वनस्पित आवरण और अन्य सभी भूमि उपयोग वर्गों के वर्गीकरण की सटीकता का आकलन करने के लिए, एक समग्र मैट्रिक्स का उपयोग करके समग्र वर्गीकरण सटीकता और कप्पा मूल्य का अनुमान लगाया गया।

	~	→	\sim	0	C
तालिका	1- बंगलरु	शहर में वनर	भ्यात	पारव	तन
(2)	006 2010) से सम्बंधित	ा अतंत्र	क ने	
(2)	JU6-2019) स सम्बादत	जा	わら	


वर्ष	वनस्पति / वृक्ष आवरण के तहत क्षेत्र (हेक्टेयर में)	कुल बी.बी.एम.पी. भौगोलिक क्षेत्र में योगदान (%)		
2006	21,414.9	30.1 %		
2019	18,572.2	26.1 %		
कुल	- 2,842.5	- 4.0 %		

परिणाम और चर्चा: वर्ष 2006 और 2019 के उपग्रह प्रतिबिम्बों के विश्लेषण के आधार पर बेंगलुरु का वनस्पति परिवर्तन मानचित्र बनाया गया (चित्र 2)। इस चित्र के आधार पर यह स्पष्ट रूप से देखा जा सकता है कि शहर के बाहरी इलाकों में विशेष रूप से शहरी विस्तार के कारण वनस्पति का हास हुआ है जबकि केंद्रीय कोर शहरी क्षेत्र में अधिकतर परिवर्तन या तो सकारात्मक हैं अथवा नगण्य हैं। वनस्पति आवरण में सकारात्मक परिवर्तन का श्रेय प्रमुख रूप से बन्नेरघट्टा, थुराहल्ली एवं इब्बलुरु वन क्षेत्रों में बढ़ते हुए

वनस्पति घनत्व और बेंगलुरु सिविक निकायों और नागरिकों द्वारा झीलों के संरक्षण के साथ-साथ शहर के पार्कों में वृक्षारोपण की गतिविधियों को जाता है। वनस्पति में नकारात्मक परिवर्तनों के लिए मुख्य रूप से बस्तियों हेतु नए लेआउट के निर्माण, निर्मित क्षेत्र के विस्तार और बुनियादी ढांचे के साथ-साथ शहर में अन्य विकासात्मक गतिविधियों को ज़िम्मेदार माना जा सकता है (चित्र 3)। इस अध्ययन के परिणामों के आधार पर 2019 में बेंगलुरु में वनस्पति आवरण 26.1% (18,572.2 हेक्टेयर) अनुमानित किया गया, जबिक 2006 में यह अनुमान 30.1% था (21,414.9 हेक्टेयर) (तालिका1)। इस प्रकार इन वर्षों में कुल 4% वनस्पति आवरण का ही ह्रास हुआ। समग्र वर्गीकरण सटीकता वर्ष 2006 के लिए 92.1% और 2019 के लिए 95.9% पाई गई जबिक कप्पा मूल्य 91.2% एवं 95.5%, क्रमशः अनुमानित किया गया।

बी.बी.एम.पी. क्षेत्र में कुल 198 वार्ड हैं, जिनका क्षेत्रफल 32 हेक्टेयर से लेकर 2847 हेक्टेयर के बीच है। वनस्पति परिवर्तन की गतिशीलता को समझने के लिए, इन सभी 198 वार्डों में वर्ष 2006 को आधार बनाकर वनस्पति आवरण में हुए परि वर्तन का विश्लेषण किया गया। इनमें से 82 वार्डों में सकारात्मक परिवर्तन हुए, 54 वार्डों में नकारात्मक परिवर्तन हुए, जबिक 62 वार्डों में नाममात्र परिवर्तन या लगभग समान स्थिति दिखाई दी।

I.बेंगलुरु शहर में हरियाली बरक़रार रखने का प्रमुख श्रेय विभिन्न प्रकार के पार्कीं, सैकड़ों झीलों और वन क्षेत्रों के साथ-साथ छावनियों, अनुसंधान संस्थानों और कई सरकारी एवं सार्वजनिक उपक्रमों में पाए

चित्र 2: बेंगलुरु का वनस्पति परिवर्तन मानचित्र (2006-2019)

जाने वाले वनस्पित आवरण को जाता है। बेंगलुरु शहर के मौजूदा वनस्पित आवरण को बनाए रखने और सुधारने के लिए सिफारिशें भी दी गई हैं। यथा - वृक्षों की कटाई की बजाए उनका समुचित प्रत्यारोपण, आवश्यकतानुसार उपयुक्त पौधों की प्रजातियों का चयन, ऊर्ध्वाधर (वर्टिकल) और छत पर बागवानी (चित्र 4), वृक्षारोपण मुहिम द्वारा मौजूदा वनस्पित को बढ़ाना, पार्कों का सघनीकरण, गृह-वाटिका (किचन गार्डन)/इनडोर वनस्पित पर ज़ोर, सड़क-

चौड़ीकरण / मेट्रो लाइनों के लिए कटे वृक्षों हेतु प्रतिपूरक रोपण, रोगग्रस्त एवं जीर्ण अवस्था के पेड़ों का प्रतिस्थापन, वर्षा जल संचयन आदि।

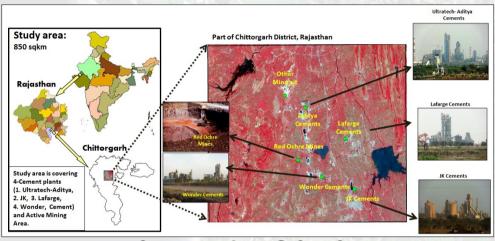
चित्र 4: बेंगलुरू में सफल वृक्ष प्रत्यारोपण का उदाहरण; ऊर्ध्वाधर (वर्टिकल) बागवानी; छत पर बागवानी / हरियाली-युक्त दीवार (बाईं से दाईं तरफ)

निष्कर्ष: इस अध्ययन में निर्मित वनस्पति परिवर्तन मानचित्र (2006-2019) के अनुसार बेंगलुरु शहर के 198 वार्डों में से 82 वार्डों में सकारात्मक परिवर्तन हुए, 54 वार्डों में नकारात्मक परिवर्तन हुए, जबिक 62 वार्डों में नाममात्र परिवर्तन या लगभग समान स्थिति दिखाई दी। 2019 में बेंगलुरु में वनस्पति आवरण 26.1% (18,572.2 हेक्टेयर) अनुमानित किया गया, जबिक 2006 में यह अनुमान 30.1% (21,414.9 हेक्टेयर) था तथा इन वर्षों के दौरान कुल 4% वनस्पति आवरण की क्षित हुई। प्रमुख सकारात्मक और नकारात्मक परिवर्तनों को उजागर किया गया है। बेंगलुरु शहर के मौजूदा वनस्पति आवरण को बनाए रखने और सुधारने के लिए सिफारिशें भी दी गई।

आभार: लेखिका निदेशक, एन.आर.एस.सी. (हैदराबाद) एवं मुख्य-महाप्रबंधक, क्षेत्रीय केंद्र (हैदराबाद) के प्रति अपना धन्यवाद एवं आभार व्यक्त करती है, जिन्होंने सभी परियोजनाओं में सदैव अपना मार्गदर्शन व प्रोत्साहन दिया। साथ ही इस अध्ययन की टीम के सभी सदस्यों एवं क्षेत्रीय सुदूर संवेदन केंद्र-दक्षिण (बेंगलुरु) के सभी सहकर्मियों के सहयोग के लिए भी, वह उनकी आभारी है।

सन्दर्भ: K. Ganesha Raj, Shivam Trivedi, K. S. Ramesh, R. Sudha, S. Rama Subramoniam, H. M. Ravishankar & A. Vidya (2020). Assessment of vegetation cover of Bengaluru City, India, using Geospatial Techniques. Published online, Journal of Indian Society of Remote Sensing, Nov.13, 2020. https://doi.org/10.1007/s12524-020-01259-5

RRSC-South (2019). Assessment of vegetation cover of Bengaluru City using Geospatial Techniques, NRSC Technical Report, NRSC-RC-REGBAN-RRSC-BANG-DEC-20-19-TR-0001406-V1.0, p. 1-73.

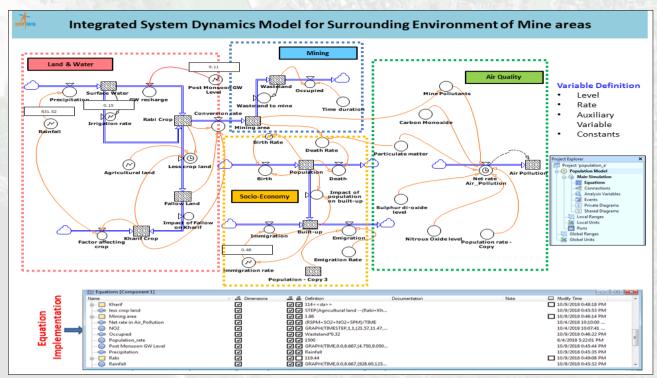


खनन क्षेत्र के आसपास के पर्यावरणीय प्रतिरूपण हेतु प्रणाली गतिकी आधारित अध्ययन

डॉ. राकेश पालिवाल आरआरएससी (पश्चिम) जोधपुर

इस अनुसंधान परियोजना के दो प्रमुख उद्देश्य हैं- प्रथम उद्देश्य यह है कि विभिन्न सरकारी विभाग, पर्यावरण के घटक जैसे कि जल, वायु व भूमि उपयोग/भू-आवरण पर आवधिक रूप से आंकड़े प्रकाशित करते हैं। अत: सतत विकास हेतु इन आंकड़ों का एकीकृत रूप से अनुप्रयोग कर एक छोटे खनन क्षेत्र व उसके आसपास के क्षेत्रीय वातावरण पर खनन के प्रभाव का विश्लेषण। जबिक दूसरा उद्देश्य यह है कि खनन क्षेत्र और उसके आसपास के पर्यावरण क्षेत्र के विभिन्न घटकों (भूमि, जल एवं वायु) का एक-दूसरे घटक पर प्राथमिक, द्वितीयक इत्यादि व सकारात्मक/नकारात्मक प्रभाव का समग्र रूप से विश्लेषण।

इन दोनों ही उद्देश्यों की पूर्ति के लिए प्रणाली गतिकी (System Dynamic) पद्धति पर्यावरणीय प्रतिरूपण के लिए उपयोग किया गया है। इस हेत् राजस्थान राज्य के जिले चितौडगढ के वर्ग लगभग 850 किलोमीटर जिसमें 4-


चित्र-1: अध्ययन क्षेत्र (अवस्थिति मानचित्र)

प्रमुख सीमेंट उद्योग एवं उनके खनन क्षेत्र को अध्ययन हेतु चुना गया है व इस क्षेत्र को चित्र-1 में दर्शाया गया है।

इस इलाके में 4.1% खनन क्षेत्र के अलावा कृषि भूमि की भी बहुलता (लगभग 60%) है। कुल क्षेत्र की क्रमश: लगभग 12% बंजर भूमि व वन भूमि भी है। इसके साथ ही सतही जल के स्रोत भी उपलब्ध है।

विभिन्न उपलब्ध आंकड़ों (वर्ष-2006 से) के आधार पर सर्वप्रथम भूमि, जल एवं वायु उप-प्रतिरूप (सब मॉडल) का विकास किया गया व अंततः उनका युग्मन करके एकीकृत प्रतिरूप (Integrated Model) का विकास किया गया है। भूमि उपप्रतिरूप में सुदूर संवेदन उपग्रह के चित्रों का अध्ययन/वर्गीकरण करके भू-उपयोग/भू-आवरण के आंकड़ों का जनन किया गया। जल उप-प्रतिरूप में भू-जल विभाग से प्राप्त वार्षिक भू-जल स्तर व भू-जल गुणवत्ता आंकड़ों से जल गुणवत्ता सूचकांक का विकास किया गया। वहीं भारत मौसम विज्ञान विभाग से वर्षा स्तर के वार्षिक आंकड़े प्राप्त कर उपरोक्त प्रतिरूप में उनका प्रयोग किया गया। जनगणना विभाग से प्राप्त जनसंख्या के आंकड़ों को सामाजिक-आर्थिक अध्ययन के लिए प्रयोग किया गया। इस तरह विभिन्न प्राप्त आंकड़ों के स्रोत व विवरण तालिका-1 में दर्शाये गये हैं।

तालिका-1- आंकड़ों के स्रोत						
	Factors	Source of data				
Land	Kharif Crop area Rabi crop area Waste land Fallow land Mining area	Satellite data				
	Rainfall	IMD				
	Surface Water	Satellite data				
Water	Ground Water Post monsoon GW level	── Groundwater Department				
	Water Quality	Ground Water Department – Jodhpur, Udaipur	Parameters Collected Chloride, Total Hardness, pH, TDS			
Air	Suspended Particulate matter (SPM)	Rajasthan State Pollution Control	Parameters Collected PM _{2.5} , Nitrous Oxide, Sulphur-dioxide			
	Sulphur di- oxide Nitrous oxide	Board- Jaipur				
Socio-Economic	Population Birth rate Death rate	Census data	1971, 1981, 1991, 2001, 2011			

चित्र-2: एकीकृत प्रतिरूप

एकीकृत प्रतिरूप (Integrated Model) का विकास 2006 को आधार वर्ष मानकर किया गया है तथा अनुरूपण (Simulation) चालीस (40) वर्षों (2006 से 2046) की अविध के लिए किया गया है, एकीकृत प्रतिरूप चित्र-2 में दर्शाया गया है। यह प्रतिरूप खनन, बंजर भूमि एवं कृषि भूमि जिसमें खरीफ फसल, रबी फसल, परती भूमि, बंजर भूमि, वायु गुणवत्ता, जल गुणवत्ता सूचकांकों एवं अन्य संपार्श्विक आकंड़े यथा वर्षा एवं भूजल आंकड़ों के मध्य के संबंध एवं अन्योन्यक्रिया को दर्शाता

चित्र-3: भू-घटक

चित्र-४: वायु व जल घटक

है। यह प्रतिरूप (Model) खनन, जनसंख्या एवं निर्मित/आबादी क्षेत्र के संवर्धन के बीच कार्यात्मक संबंध को भी दर्शाता है। इस प्रतिरूप से प्राप्त परिणाम को तालिका-2 व 3 में दर्शाया गया है एवं प्रतिरूप अनुरूपण का आलेखी निरूपण क्रमशः चित्र-3 व 4 में दर्शाया गया है। इस प्रतिरूप (Model) का वैधीकरण (validation) 2016-17 के भूमि उपयोग / भू-आवरण आंकड़ों एवं वायु गुणवत्ता सूचकांक-2016 तथा जल गुणवत्ता

तालिका 2: एकीकृत प्रतिरूप अनुरूपण के परिणाम: भू-घटक (क्षेत्र वर्ग कि.मी. में)					तालिका ३: एव	•	प अनुरूपण के परिण ल घटक	ाम:- वायु	
Year	Falow land	Mining	Agricultural land	Build-up Waste		Year	WQI	Mining Area (sqkm)	AQI
2006 (Model)	48.74	14.54	501.23	27.91	141.75	2006 (Model)	50	14.52	194
2016 (Model)	14.41	30.24	499.45	37.65	136.51	2016(Model)	58	30.24	202
2016 (Actual)	15.65	34.48	485.63	34.29	143.15	2016 (Actual)	62	34.29	209
2026 (Model)	9.64	43.74	489.10	47.35	130.86	2026 (Model)	72	43.74	215
2036 (Model)	8.44	56.10	478.75	56.74	126.34	2036 (Model)	84	56.10	220
2046 (Model)	7.51	67.23	468.40	65.89	119.55	2046 (Model)	90	67.23	228

सूचकांक-2016 के आंकड़ों के साथ किया गया है। चित्र-3 व प्रतिरूप (मॉडल) के अनुसार यह निष्कर्ष निकलता है कि कृषि भूमि, परती भूमि व बंजर भूमि कम हो रही है, और निर्मित/आबादी क्षेत्र व खनन क्षेत्र में विस्तार हो रहा है।

कृषि भूमि (2006 से 2018) में वृद्धि के कारण अधिक मात्रा मे भू-जल दोहन की मुख्य समस्या देखी गयी है। खाद्य

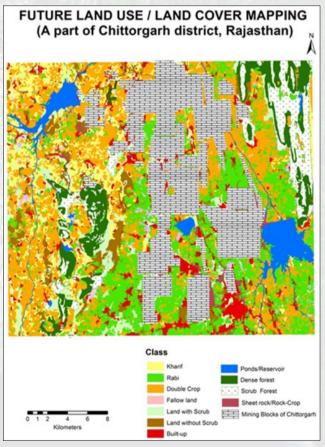

चित्र-5: बिजनेस एज़ युजुअल परिस्थिति

सुरक्षा के दृष्टिकोण से कृषि भूमि में वृद्धि सकारात्मक प्रभाव है, जबिक अत्यधिक भू-जल दोहन, भू-जल स्तर पर नकारात्मक प्रभाव दर्शाता है। इसलिए, नीति विकल्प (policy options) का भी एकीकृत प्रतिरूप (integrated model) में कार्यान्वयन किया गया है। बिना नीति विकल्प अर्थात् जो गतिविधियां जारी है और आगे वर्ष 2046 तक इसी तरह या और अधिक प्रगतिशील रूप में जारी रहेगी (बिजनेस एज़ यूजुअल परिस्थिति), उस परिस्थिति में एकीकृत प्रतिरूप द्वारा परिणामित, बढ़ रहे भू-जल दोहन व घट रहे भू-जल स्तर को चित्र-5 में दर्शाया गया है। इस अध्ययन में सतत विकास हेत् निम्न तीन नीति विकल्पों को प्रतिरूप अनुरूपण में कार्यान्वित किया गया हैं:-

- 1. भू-जल के साथ-साथ सतही जल का संयुक्त उपयोग,
- 2. संवर्धित सिंचाई तकनीक का उपयोग ड्रिप, स्प्रिंकलर, लेज़र भूमि समतलीकरण आदि एवं
- 3. न्यून जल सिंचाई वाली रबी फसलों को प्रोत्साहन गेहूँ के स्थान पर जौ की खेती

चित्र-6 के अनुसार प्रतिरूप अनुरूपण के परिणाम यह दर्शाता है कि अधिमानित (प्रिफर्ड) परिस्थिति में समयाविध (2006 से 2046) के दौरान भू-जल स्तर में वृद्धि हो रही है जबिक भू-जल दोहन में गिरावट हो रही अध्ययन क्षेत्र का जल गुणवत्ता सूचकांक एवं वायु गुणवत्ता सूचकांक मानक सीमा के भीतर पाया गया। खनन के अन्वेषण की संभाव्यता को प्रतिरूप अनुरूपण (Model Simulation) में सम्मिलित करने के उरांत, कृषि क्षेत्र का खनन क्षेत्र में पुर्वानुमानित रूपांतरण को चित्र-7 में दर्शाया गया है।

अध्ययन क्षेत्र का प्रणाली गतिकी (System Dynamics) आधारित विकसित एकीकृत प्रतिरूप (Integrated Model), परिवर्ती कारकों (Variables) की अन्योन्यक्रिया (Interaction) एवं प्रत्येक परिवर्ती कारक का एक दूसरे परक एवं ऐसे



चित्र-६: अधिमानित परिस्थिति

ही भाव को समय के सापेक्ष स्पष्ट रूप से दर्शाता है। प्रस्तुत दृष्टिकोण में, वास्तविक काल (Real Time) प्रणाली परिवर्ती कारकों के मूल्य के साथ-साथ आलेखी निरूपण का विश्लेषण करना संभव है। प्रतिरूप अनुरूपण (Model Simulation) परिणाम प्रिफर्ड परिस्थिति के माध्यम से बिजनेस एज यूजुअल परिस्थिति (Scenario) एवं संभाव्य नीति विकल्प में भावी परिवर्ती कारक मूल्य को सुनिश्चित करते हैं। यह अध्ययन

बताता है कि प्रणाली गतिकी प्रतिरूपण (System Dynamic Modelling) एवं अनुरूपण (Simulation) दृष्टिकोण के माध्यम से सतत विकासात्मक नियोजन (Sustainable Developmental Planning) / संसाधनों के प्रबंधन (Resources Management) को प्राप्त किया जा सकता है। इसके अलावा, यह अध्ययन, यह भी दर्शाता है कि विभिन्न स्रोत से जिनत विभिन्न प्रकार के आवर्ती आंकडों को एकीकृत पर्यावरणीय प्रतिरूपण में प्रणाली गतिकी

चित्र-7

हाइब्रिड पोल एवं प्राप्त स्यूडो-क्वाड पोल आंकड़ों से चंद्रमा की सतह के लक्षणों के लिए पोलारीमेट्रिक प्राचलों का आकलन

एस हरिप्रिया, राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

चंद्रमा के विविध लक्षणों से ध्रुवीकरण प्रकीर्णमापी प्रक्रियाओं के विश्लेषण के लिए सिंथेटिक अपरचर रडार (SAR) अपनी उच्च संवेदनशीलता से पारद्युतिक (डायइलैक्ट्रिक) स्थिर, दृश्य कोण तथा ध्रुवीकरण आश्रित लक्ष्म प्रकीर्णमापी एक संभावित उपकरण है। परिक्रमा करने वाले नीतभार (पेलोड) के रूप में इसरो के चंद्रयान -1 पर सवार मिनी-SAR एमआरएफएफआर फोर-रनर (MRFFR) और नासा के लूनर रिकॉनिंसेंस ऑर्बिटर ने चंद्रमा की सतह पर गड्ढों, बर्फीले ध्रुवीय क्षेत्रों और स्थायी रूप से छाया वाले क्षेत्रों के बारे में अध्ययन करने के लिए बेहद उपयोगी रडार डेटा उपलब्ध कराए हैं। यह अध्ययन मिनी-RF-MRFFR और Mini-RF हाइब्रिड पोलिमिमेट्रिक डेटा के ध्रुवीकरण संसाधन के उद्देश्य से किया जाता है, जो निर्णायक पोलिमिमेट्रिक मापदंडों की व्युत्पत्ति के लिए होता है, जिसका उपयोग चंद्र रेजोलिथ की विशेषता के लिए किया जा सकता है। दक्षिण ध्रुव एटकेन्स बेसिन, ओशनस क्षेत्र और प्रभाव क्रेटर की प्रकीर्णन विशेषताओं को समझने के लिए एम-ची पोलारिमेट्रिक अपघटन तकनीक को लागू किया गया है।

एक विस्तारित विश्लेषण के रूप में, छद्म-क्वाड पोल सहसंयोजक मैट्रिक्स का निर्माण हाइब्रिड पोल डेटा से ध्रुवीय परिमार्जन मॉडल का उपयोग करके किया जाता है, जिसे चंद्रयान -2 से दोहरे एलएस सार आंकड़ों के साथ संबद्ध किया जा सकता है। घर में विकसित सॉफ्टवेयर का उपयोग चंद्र परिदृश्य के उपरोक्त अध्ययन के लिए किया जाता है। सूचकांक: चंद्रमा, मिनी-सार, क्रेटर्स, हाइब्रिड ध्रुवीकरण, ध्रुवीयमितीय अपघटन, लक्ष्य प्रकीर्णन।

प्रस्तावना: पृथ्वी के चारों ओर चंद्रमा के कक्षीय पथ के झुकाव का अर्थ है कि स्थायी छाया और पानी वाले बर्फ वाले संभावित क्षेत्रों के बड़े क्षेत्रों को पृथ्वी से कभी नहीं देखा जा सकता है। इसके अलावा सभी ध्रुवीय क्षेत्र जो पृथ्वी से देखे जा सकते हैं, उच्च आपतन कोणों पर देखे जाते हैं, जो बर्फ जमा के लिए अनुमानित सुसंगत बैकस्कैटर को कम करता है (स्पुडिस एट अल 2010)। मुख्य रूप से, चंद्र सतह प्रक्रियाओं को प्रभाव से संबंधित घटनाओं, ज्वालामुखी प्रक्रियाओं और विवर्तनिक (टेक्टोनिक) गतिविधियों में वर्गीकृत किया जाता है जिन्होंने चंद्रमा की संरचना को बदल दिया है। चंद्रमा की सतह पहाड़ों और घाटियों, गड्ढों सिहत कई लक्षण हैं, और मारिया, ओशनस, लक्सस, महल और साइनस । वहां कहीं भी पानी मौजूद नहीं है लेकिन ऐसा माना जाता है कि ये सभी चन्द्रमा की सतह पर बहने वाले चन्द्रमा के मैन्टल पर मौजूद चट्टानों के पिघलने से सतह बनी है।

चन्द्रमा के प्रमुख लक्षण: चंद्र रेजोलिथ ठोस चंद्रमा और पदार्थ व ऊर्जा के बीच की वास्तविक सीमा परत है जो सौर प्रणाली को भरती है। इसमें इन दोनों क्षेत्रों के बारे में महत्वपूर्ण जानकारी शामिल है, और रेजोलिथ का अध्ययन चंद्रमा और उसके आस-पास के वातावरण को समझने के लिए महत्वपूर्ण है। चंद्र सामग्री के भौतिक और रासायनिक गुणों के सभी प्रत्यक्ष माप नमूने, दोनों चट्टानों और मिट्टी पर किए गए हैं, रेजोलिथ से एकत्र किया गया।

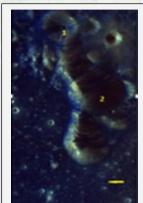
चंद्रमा पर लगभग 8497 सरल से जटिल और मध्य शिखर गड्ढों की पहचान की गई है। एक क्रेटर से बढ़ती रेडियल दूरी, क्रेटर (इजेका) से निकली सामग्री क्रमिक रूप से निरंतर जमा, असंतुलित जमा और किरणें बनाती है। चंद्रमा को मैग्मा से निकलने वाली गैसों द्वारा संचालित बेसाल्टिक ज्वालामुखी के लिए जाना जाता है, और पिघली हुई पाइरोक्लास्ट या ज्वालामुखीय राख छोटी बूंदों के रूप में फैल जाती है जो बड़े क्षेत्रों पर बिखरे हो सकते हैं। Pyroclastic जमा व्यापक रूप से फैले हैं और आसानी से प्रभाव बागवानी द्वारा रेजोलिथ में काम करते है। चंद्रमा भी Mare घाटियों से बना है, जो गहरे रंग के मैदान हैं, जो कम-चिपचिपापन वाले बेसाल्टिक लावा के बड़ी मात्रा में विस्फोट से बने थे। इन बेसिनों को उनके परिपत्र, बहु-रिंग प्रभाव संरचनाओं से जाना जाता है। ऐसे घाटियों के भीतर गहरे रंग के लावे को मारिया के रूप में नामित किया गया है।

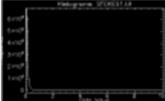
- 1.2 सार नीतभार युक्त चंद्र ऑर्बिटर्स: चंद्र सतह की भीड़ और इसके हस्ताक्षर रडार रिमोट सेंसिंग द्वारा प्राप्त किए जा सकते हैं। सार चंद्र भौतिक संरचना को समझने का एक आशाजनक तरीका है, क्योंकि रडार के संकेतों को लक्ष्य पारवैद्युतिक गुणों द्वारा बदल दिया जाता है और उनकी भौतिक संरचना अलग-अलग रडार रिटर्न उत्पन्न करती है। जब ऑप्टिकल चित्र के साथ तुलना की जाती है, रडार इमेजिंग सतह के लक्षण और उपसतह तार का अध्ययन करने का एक व्यापक साधन प्रदान करता है। हांलािक, लंबे समय तक तरंग दैध्य वाले सार संकेत, सतह को भेदने में सक्षम होते हैं, जो अंतर्निहित उप सतह के तार की व्यापक तस्वीर और चंद्र मारिया से रडार बैकस्कैटर को बड़े पैमाने पर ठींक से दफन चट्टानों से बिखरे हुए Mie से सतह को भेदने में सक्षम होते हैं। नासा के लूनर रिकॉनेनेस ऑर्बिटर (LRO) पर लगे मिनिएचर रेडियो फ्रिकेंसी (मिनी-आरएफ) इंस्ट्रूमेंट को वृत्तीय संचरण रेखीय रिसीव कॉन्फ़िगरेशन में संचालित करने के लिए डिज़ाइन किया गया था। मिनी- SAR-Fore Runner इसरो के चंद्रयान -1 में समान ध्रुवीय परिधि विन्यास पर था। उपरोक्त सार संवेदक में एस बैंड में ऑपरेटिंग आवृत्ति के रूप होता है और 12.6 सेमी के क्रम की लंबी तरंग दैध्य के साथ जो उच्च प्रवेश गहराई की सुविधा देता है। मिनी सार नीतभार की परिक्रमा ने छायांकित क्षेत्रों की इमेजिंग को कई बार सक्षम किया जिससे विश्लेषण, अभिलेखीय और गैलरी के लिए व्यापक चंद्र डेटासेट प्रदान किए गए।
- 2. **हाइब्रिड पोलारिमेट्रिक संसाधन और कैसी-काड पोल निर्माण:** सार से प्राप्त मौलिक डेटा उत्पाद सापेक्ष चरण की जानकारी के साथ बैकस्कैटर क्षेत्र का जटिल लक्ष्य वेक्टर है। बिखरे हुए मैट्रिक्स तत्व तब चार स्टोक्स वैक्टर की व्युत्पित्त के लिए उपयोग किए जाते हैं एसा, एस2, एस3 और एस4 की बिखरी हुई लहर (स्टोक्स, 1852, रनी, 2007; क्लाउड एट अल।, 2012)। यह इस तथ्य के कारण है कि यह साबित हो गया है कि स्टोक्स पैरामीटर आंशिक रूप से ध्रुवीकृत तरंगों को उनके चरणों और आयाम से नहीं बिल्क उनकी शक्ति शर्तों से चिह्नित करते हैं।
- 2.1 हाइब्रिड पोल डेटा से छद्म काड पोल का पुनर्निर्माण: हाइब्रिड पोल और काड पोल एसएआर डेटा की तुलना करने के लिए सामान्य तरीकों में से एक काड-पोल निर्माण को लागू करना है जो सीपीएआर माप के दूसरे क्रम के आंकड़ों से काड-पोल सार मैट्रिसेस प्राप्त करने पर केंद्रित है। वेक्टर covariance मैट्रिक्स की तरह सीपीएआर डेटा से काड-पोल डेटा को पुनरावृत्ति-आधारित एल्गोरिथ्म का उपयोग करके पुनर्निर्माण करने के लिए, रैखिक सुसंगित और क्रॉस ध्रुवीकरण अनुपात के परिमाण को एक पैरामीटर एन (सॉइरिस एट अल 2005) के साथ जोड़ा गया था। छद्म-काड पोल सहसंयोजक मैट्रिक्स को प्राप्त कर हाइब्रिड पोल घटकों से ध्रुवीयमितीय प्रकीर्णन और पुनर्संरचना मॉडल (JC Souyuris 2005, N Nord 2009, MJ Collins 2013) का उपयोग किया जा सकता है। शासी समीकरण इस प्रकार हैं: SHHSHV* = SVVSHV* = 0 (1) जहां C11, C12, C21 और C22 स्टोक्स मापदंडों से प्राप्त हाइब्रिड पोल सहसंयोजक मैट्रिक्स तत्व हैं और सह-पोल है सहसंबंध छद्म काड पोल डेटा के सह-कुशल। इस अध्ययन को निम्नलिखित तरीके से किया गया है:
- 1. ध्रुवीयकरण की डिग्री प्राप्त करने के लिए एमआरएफआर और मिनी-आरएफ हाइब्रिड पोलारिमेट्रिक डेटा के प्रोलिमेट्रिक संसाधन, प्रमुख चंद्र के लिए पॉइनकेयर दीर्घवृत्ताभ कोण, वृत्ताकार पोल अनुपात और जटिल सहसंबंध गुणांक प्राप्त किया गया है। विशेषताएं। Mare और गड्ढा क्षेत्र का विश्लेषण उनके बैकस्कैटर तीव्रता और ध्रुवीय व्यास पर हस्ताक्षर करके किया जाता है।
- 2. m-chi अपघटन तकनीक दक्षिणी ध्रुव ऐटकेन एसपीए बेसिन और महासागरीय क्षेत्रों के लिए लागू की गई है।
- 3. इन-हाउस विकसित सॉफ्टवेयर का उपयोग करके उपरोक्त विशेषताओं के लिए स्यूडो-क्वाड पोलिमेट्रिक डेटा और क्वाड पोल घटकों की व्युत्पत्ति के लिए CTLR के रूपांतरण के लिए कॉम्पैक्ट पोलिमेट्रिक बिखरने वाले मॉडल और पुनर्निर्माण तकनीक का विश्लेषण और कार्यान्वयन।
- 4. गड्ढा क्षेत्रों के ध्रुवीय व्यास के मात्रात्मक विश्लेषण।

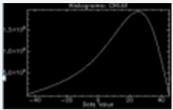
3. अध्ययन और आंकड़ासैटों का क्षेत्र: दिक्षणी ध्रुव ऐटकेन बेसिन और एसपीए बेसिन के साथ ओशियेन प्रोसेलरम क्षेत्र को अध्ययन के लिए लिया गया है। एसपीए बेसिन सौर मंडल का सबसे बड़ा गड्ढा है और यह है 2,500 किमी व्यास और 13 किमी गहरा है। यह अपने गुरुत्वाकर्षण विसंगति के लिए प्रसिद्ध है। एसपीए डेटा मिनी-आरएफ अभिलेखीय में उपलब्ध है। ओशनस प्रोसेलरम चंद्रमा के निकट की ओर एक बड़े क्षेत्र को आवृत्त करता है। ओशनस डेटा मिनी-सार अभिलेख में उपलब्ध है।

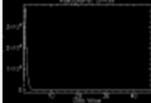
4. कार्यप्रणाली:

- 1. चंद्र यान डेटा अध्ययन साइटों के लिए इसी सेट ग्रहों डाटा System- से डाउनलोड किया गया पीडीएस जियोसाइंस नोड-ऑर्बिटल डेटा एक्सप्लोरर-ओडीई।
- 2. प्लैनेटरी डेटा सिस्टम फॉर्मेट में MRFFR और मिनी-आरएफ डेटा को निगला जाता है और दो चैनल तीव्रता और वास्तविक और काल्पनिक क्रॉस चैनल तीव्रता प्राप्त होते हैं।
- 3. चैनल मूल्यों का उपयोग करके स्टोक्स मैट्रिक्स का निर्माण किया जाता है। ध्रुवीकरण की डिग्री, पॉइनकेयर दीर्घवृत्ताभ कोण, रैखिक ध्रुवीकरण की डिग्री और पिरपत्र ध्रुवीकरण अनुपात ब्याज के चंद्र क्षेत्रों के लिए व्युत्पन्न होते हैं और मूल्यों का विश्लेषण किया जाता है।
- 4. m-chi अपघटन सतह के विश्लेषण, आयतन और दोहरे उछाल प्रकीर्णन विशेषताओं के लिए कार्यान्वित किया जाता है।
- 5. छद्म-क्वाड पोल सहसंयोजक मैट्रिक्स घटक SHH और SVV SHV और जटिल सह-पोल सहसंबंध घटक <SHHSVV *> हाइब्रिड पोल सहसंयोजक मैट्रिक्स तत्वों से प्राप्त होते हैं। परतों को स्टैक किया जाता है और एम-ची विघटित आउटपुट के साथ तुलना की जाती है।
- **5.परिणाम तथा चर्चा :** इंटैन्सिटी स्टोक1, वृत्तीय पोल अनुपात, दीर्घ वृत्तीयता कोण व समग्र क्षेत्र का सहसंबंध गुणांक केहिस्टोग्राम प्लॉट चित्र.1में प्रस्तुत किए गए हैं। स्पा बेसिन m-chi अपघटन के बाद के आंकड़े निम्नानुसार हैं: बाहरी रिम की तुलना में गड्ढा क्षेत्र के लिए सीपीआर मान अधिक देखा जाता है। यह गड्ढा आकारिकी और मात्रा के बिखरने

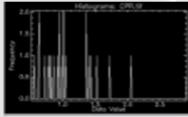

के प्रभाव के साथ-साथ पिघल जमा के कारण बिखरने के लिए जिम्मेदार ठहराया जा सकता है। एम-ची अपघटन मात्रादर्शाता है और सतह के बिखरने कोजहां गड्ढा रिम के पास है जहां डबल उछाल हस्ताक्षर प्रमुख हैं। छद्म काड पोल

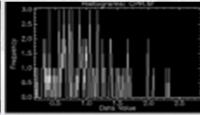

क्र.सं.	चंद्र फीचर	मध्य देशांतर	मध्य अक्षांश	सार संवेदक
1	एसपीए- दक्षिण ध्रुव अतिकेन बेसिन	173312	-16.700	एमआरएफ एलआरओ
2	ओसियेन्स Procellarum	-48.6212	24.8702	MRFFR

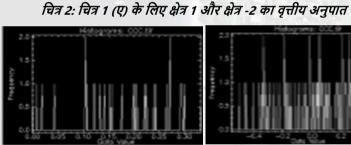

विशेषताओं कोअनुरूप पाया जाता है। लक्ष्य बिखरने वाले तंत्र के एम-ची प्रतिनिधित्व के। सीपीआर मूल्यों को क्रेटर के अंदर 1.2 से 1.5 और बाहरी रिम के पास घटने के क्रम में पाया जाता है। दक्षिण के पास एक छोटे से क्षेत्र के लिए, क्षेत्र 2 के रूप में चिह्नित, सीपीआर 0.5 से 2.3 तक भिन्न पाया जाता है। भूखंडों को चित्र -2 में प्रस्तुत किया गया है।


डेटासेट -2: ओशनस प्रोसेलरम क्षेत्र : दो ऑर्थोगोनल प्राप्त घटकों के बीच जटिल सहसंबंध सह-कुशल '६' छद्म काड पोल से लिया गया है। पूरी तरह से ध्रुवीकृत लहर की विशेषता है| ६|=1 और एक पूरी तरह से अप्रकाशित लहर देता है |। | = 0। ओशनस प्रोसेलेनम क्षेत्र के लिए, यह देखा गया था कि सहसंबंध सह-कुशल क्रेटर रिम के बाहर सकारात्मक था लेकिन मान क्रेटर के अंदर नकारात्मक और सकारात्मक थे।

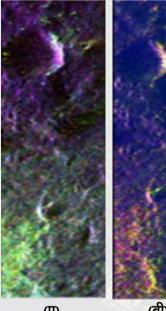
6. निष्कर्ष: दक्षिणी ध्रुव एटकेंस -एसपीए बेसिन क्षेत्र और ओशनस प्रोसेलरम क्षेत्रों का अध्ययन मिनी-आरएफ और एमआरएफएफआर अंशांकित डेटा रिकॉर्ड का उपयोग करके किया गया था। क्षेत्रों में गड्ढा संरचनाओं के लिए सीपीआर मूल्यों और सहसंबंध सह-कुशल मूल्यों की जांच करने के लिए हाइब्रिड पोलिमेट्रिक का संसाधन किया गया है। भविष्य में चंद्रयान -2 दोहरे-बैंड सार आंकड़ों का उपयोग करते हुए चंद्रमा की सतह पर लक्षणों के पूर्ण-पोल लक्षण वर्णन का अध्ययन करने के लिए इस अध्ययन को आगे बढाया जाएगा।







चित्र 1: एसपीए बेसिन- (ए) एम-ची विघटन (बी) तीव्रता (सी) अण्डाकारता (डी) रिपत्र पोल अनपात


7. आभार: लेखक अपने निरंतर प्रोत्साहन और समर्थन के लिए निदेशक. एनआरएससी और उप निदेशक, आंकडा संसाधन क्षेत्र के प्रति ईमानदारी से धन्यवाद व्यक्त करते हैं।

चित्र ४: सहसंबंध सह-कुशल मान (ए) बाहरी गड्ढा क्षेत्र (बी) इनर क्रेटर क्षेत्र

संदर्भ : अंडरसन, ले, व्हिटेकर, ईए, 1982. नासा कैटलॉग ऑफ लूनर नामकरण। नासा आरपी -1097।

1. रनी, आरके, काहिल, जेटीएस, पैटरसन, जीडब्ल्यू, बुसी, डीबीजे, 2012 बी। चंद्र क्रेटरों के लिए आवेदन के साथ हाइब्रिड दोहरी ध्रुवीयमीटर रडार डेटा का एम-ची अपघटन। जर्नल ऑफ जियोफिजिकल रिसर्च 117, E00H21, http://dx.doi.org/ 10.1029 / 2011JE339861

चित्र ३: ओशनस प्रोसेलनम (ए) एमची छवि (बी) छद्म क्वांड पोल छवि

- 2. चंद्रयान -1 मिनी-सार ध्रुवीयमिति डेटा का उपयोग करके चंद्र भूमध्यरेखीय क्षेत्र के बिखरने की विशेषताओं का अध्ययन श्रीराम सरन, अनूपदास, शिवमोहन, मनभावकभोजी ग्रहों और अंतरिक्ष विज्ञान 71 (2012) 18–30।
- 3. द मिनी-सर इमेजिंग राडार, चंद्रयान -1 मिशन टू द मून पीडीस्पुडिस एट अल -41 वें चंद्र और ग्रहों विज्ञान सम्मेलन (2010) के परिणाम

बृहत ब्रह्माण्ड में अनंत आकाशगंगाएं

ओझा अनिल कुमार आरआरएससी (पश्चिम) जोधपुर

प्रस्तावना: भौतिक विज्ञान की सबसे दिलचस्प शाखा खगोलविज्ञान, जिसमें तारों, ग्रहों, उल्काओं, पिण्डों, नक्षत्रों, आकाशगंगाओं तथा प्राकृतिक उपग्रहों की गित, प्रकृति, विकास, संगठन व संरचना आदि का अध्ययन किया जाता है। विज्ञान की इस विशिष्ट शाखा के अंतर्गत ब्रह्माण्ड, इसमें विद्यमान आकाशगंगाओं पर शोध किए जा रहे हैं एवं इसकी बृहता व गहराई को जानने व समझने हेतु वैज्ञानिक समुदाय निरन्तर अध्ययनरत हैं। वास्तव में, ब्रह्माण्ड के असीम रहस्य हम सबको रोमांचित करते हैं और इसी संदर्भ में, आए दिन हमें विभिन्न समाचार चैनलों, समाचार पत्रों या अन्य माध्यमों से नवीन जानकारियां मिलती हैं, परंतु मानवजाति इस संबंध में कितना जान पाई है, इसका उत्तर किसी के पास नहीं है। क्योंकि अंतरिक्ष जितना अनंत है, उतने ही असीम उसके रहस्य भी हैं। मानवजाति विभिन्न ग्रहों, क्षुद्र ग्रहों, प्राकृतिक उपग्रहों के नमूनों के अध्ययन व तारों के अन्वेषण द्वारा इन रहस्यों से पर्दा उठाने के लिए आतुर एवं प्रयत्नरत है पर यह रहस्योद्घाटन उतना ही गहरा एवं गहन है। अतः ब्रह्माण्ड एवं इसमें विद्यमान आकाशगंगाओं से संबंधित ऐसे अनेक अनछुए पहलू व अनसुलझे रहस्य हैं जिन्हें जानकर मानवजाति ब्रह्माण्ड और इसकी उत्पत्ति के रहस्य से पर्दा उठा सकती है।

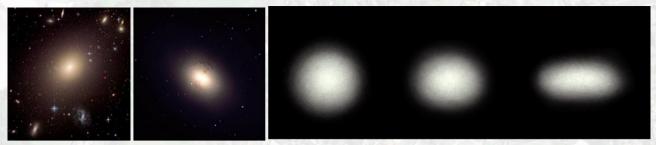
इस प्रकार, प्रस्तुत लेख में हम ब्रह्माण्ड व इसके विस्तार, इसमें मौजूद आकाशगंगाओं एवं इनके प्रकार से जुड़ी जानकारी से अवगत होंगे।

ब्रह्माण्ड: अंतरिक्ष का बृहत विस्तार जिसमें वे सब कुछ समाहित है जो अस्तित्व में हैं, ब्रह्माण्ड में सभी आकाशगंगाएँ, तारे, ग्रह आदि विद्यामान है। ब्रह्माण्ड का वास्तविक आकार हमें ज्ञात नहीं है। यह माना गया है कि ब्रह्माण्ड का लगभग 95 प्रतिशत हिस्सा श्यमा ऊर्जा (Dark Energy) व श्याम पदार्थ (Dark Matter) से आवृत्त है वहीं अन्य 5 फिसदी हिस्से में तारे, ग्रह, उनके उपग्रह और अन्य खगोलीय पिण्ड जैसे कि क्षुद्रग्रह (Asteroids), धूमकेतु (पुच्छलतारे) (Comets), उल्कापिंड (Meteors) एवं बृहत मात्रा में धूलिकण व गैस मौजूद है।

आधुनिक समय में बिग-बैंग या ब्रह्माण्डीय विस्फोट सिद्धांत (Big-Bang Theory) को ब्रह्माण्ड की उत्पत्ति का सर्वमान्य सिद्धांत माना जाता है। वैज्ञानिकों का मानना है कि बिग-बैंग की घटना तकरीबन 13.8 अरब वर्ष पूर्व घटित हुई थी। माना जाता है कि प्रारंभ में वे सभी पदार्थ, जिनसे ब्रह्माण्ड बना है, एक गोलक के रूप में एक ही स्थान पर स्थित थे, जिनका आयतन (Volume) अत्यधिक सूक्ष्म जबिक उसका तापमान (Temperature) तथा घनत्व (Density) अनंत था।

बिग-बैंग की प्रक्रिया के अंतर्गत इस छोटे गोलक में भीषण विस्फोट हुआ। इस प्रकार की विस्फोट प्रक्रिया से वृहत विस्तार हुआ। जिसके उपरांत लाखों वर्षों तक इसके तापमान में गिरावट होती चली गई और निर्मित आकाशगंगाओं के बीच की दूरी में विस्तार होता गया। इस प्रकार, इस प्रक्रिया के विभिन्न चरणों में आकाशगंगाओं, उनमें विद्यमान तारों और उनके सौरमंडल आदि का निर्माण आरंभ हुआ। माना जाता है कि आकाशगंगाओं की संरचना एवं आकार को बनने में अरबों वर्ष का समय लग जाता है, क्योंकि इस प्रक्रिया में तारों के समूहों एवं अन्य आकाशगंगाओं के साथ परस्पर क्रिया होती है। जैसा कि वैज्ञानिकों का मानना है कि ब्रह्माण्ड का विस्तार हो रहा है (मूलत: एडविन हब्बल, खगोलविद की अवधारणा है); अतः इस निष्कर्ष पर पहुँचा गया है कि आकाशगंगाओं का निर्माण अथवा गठन बिग-बैंग के बाद एवं कई अरब प्रकाश वर्ष दूर हुआ। जहां अधिकतर आकाशगंगाओं का निर्माण शुरुआती चरण में हुआ है

जबिक अध्ययन से पता चला है कि कुछ आकाशगंगाएँ पिछले कुछ अरब वर्ष पहले निर्मित हुई है। प्रारंभिक ब्रह्माण्ड में ऊर्जा व पदार्थ का वितरण समान नहीं था। घनत्व में शुरुआती भिन्नता से गुरुत्वाकर्षण बलों में भिन्नता आई, जिसके कारण पदार्थ का एकत्रण हुआ। इस प्रकार यह संगठन आकाशगंगाओं के विकास का आधार बना। वास्तव में, आकाशगंगा के निर्माण की शुरुआत हाइड्रोजन गैस से बने विशाल बादल के संचयन से होती है, जिन्हें निहारिका या नेब्युला (Nebula) कहा जाता हैं। इस प्रकार, क्रमशः इस बढ़ती हुई निहारिका में गैस के झुंड विकसित हुए। ये झुंड बढ़ते-बढ़ते घने गैसीय पिंड बने, जिनसे तारों का निर्माण आरंभ हुआ।


आकाशगंगाएँ (Galaxies): एक आकाशगंगा; गैस, खगोलीय धूण, श्याम पदार्थ (Dark Matter) एवं करोड़ों तारों और उनके सौरमंडल का एक विशाल संग्रह होता है और यह सभी गुरुत्वाकर्षण शक्ति से आपस में जुड़े या बंधे होते है अर्थात् कहा जा सकता है कि एक आकाशगंगा असंख्य तारों का एक विशाल पुंज होता है। कुछ वैज्ञानिकों का मानना है कि ब्रह्माण्ड में लगभग 100 बिलियन तक आकाशगंगाएँ हो सकती है। वैज्ञानिकों को अध्ययन से यह भी पता चला है कि आकाशगंगाएं एक दूसरे के निकट भी आती है और आपस में टकराती है। और यह अनुमान है कि हमारी आकाशगंगा मंदािकनी (Milky Way Galaxy) निकटवर्ती गैलेक्टिक पड़ौसी – एंड्रोमेडा (मिल्की वे की सबसे निकटवर्ती आकाशगंगा किंतु यह हमारी आकाशगंगा से तकरीबन 2.2 मिलियन प्रकाश-वर्ष दूर स्थित है) से भविष्य में टकराने की आशंका है। इसके अलावा, अध्ययन से यह भी ज्ञात हुआ है कि लगभग सभी बड़ी आकाशगंगाओं के केंद्र में अति विशालकाय ब्लैक होल (कृष्ण विवर) होते हैं।

हमारा सौरमंडल जिसे आकाशगंगा में है उसमें लगभग 100 से 400 बिलियन तारे हैं, सेजिटेरिअस A* (Sagittarius A*) हमारी आकाशगंगा का अति विशालकाय ब्लैक होल है जिसका द्रव्यमान लगभग चार मिलियन तारों के जितना है। हमारी आकाशगंगा की आकृति सर्पिल है और इसके केंद्र में एक रैखिक (Linear) तारों वाली पट्टी मौजूद है। हमारी गैलेक्सी के केंद्र के नजदीकी तारे अधिक संख्या में मौजूद है वहीं किनारे की तरफ तारे अपेक्षाकृत बिखरे हुए है।

आकाशगंगा के प्रकार (Types of Galaxies): आकाशगंगाओं को चार प्रमुख वर्गों में समूहित किया जा सकता हैं:-

1. सर्पिल आकाशगंगा (SPIRAL Galaxy): यह पाया गया है कि इस प्रकार की आकाशगंगाओं में नए एवं पुराने तारे सम्मिलित होते हैं। सर्पिलाकार आकाशगंगाओं में तीन भाग होते हैं यथा (i) केंद्रीय उभार (Buldge), जो कि आकाशगंगा के केंद्र में मौजूद होता है और इसमें प्राचीनतम तारे पाये जाते हैं। यहां तारों का संकेंद्रण सर्वाधिक होता है। (ii) तश्तरी (Disk), आकाशगंगा के इस भाग का आकार बाहों नुमा होता है और इसमें खगोलीय धूल, गैस और नवीन तारे पाये जाते है व (iii) प्रभामण्डल (Halo), यह केंद्रीय उभार एवं तश्तरी के कुछेक भागों के चारों ओर

गोलाकार संरचना है इसमें तारों के पुराने तारासमूह (Cluster) होते हैं। इस प्रकार की आकाशगंगाओं को भी दो और समूहों में वर्गीकृत किया जा सकता हैं, नामतः

- क) सामान्य सर्पिल आकाशगंगा (Normal Spiral Galaxy) एवं
- ख) छड़ित सर्पिल आकाशगंगा (Barred Spiral Galaxy)
- 2. दीर्घवृत्तीय अथवा अंडाकार आकाशगंगा (ELLIPTICAL GALAXY): ये आकाशगंगाएँ किसी अंडे के जैसी आकृति

की होती है। इनमें अधिकतर प्राचीनतम तारे पाये जाते हैं और इनमें धूल व गैस की अनुपस्थिति की वजह से नये तारों का निर्माण बहुत कम होता है। ब्रह्माण्ड में विशालतम आकाशगंगाएँ इसी आकृति की हैं।

3. मसूराकार आकाशगंगा (LENTICULAR GALAXY): सर्पिलाकार एवं अंडाकार आकाशगंगाओं के अतिरिक्त कुछ ऐसी भी आकाशगंगाएँ हैं, जिनका आकार तश्तरी के जैसा होता है लेकिन भुजायें नहीं होती है। यह सर्पिलाकार

एवं अंडाकार के मध्य की अवस्था है। ये आकाशगंगाएँ, गैलेक्सी क्लस्टर (Galaxy Cluster) के अत्यधिक घनत्व वाले

क्षेत्र में पायी जाती है और इसमें प्राचीन तारे होते हैं।

4. अनियमित आकाशगंगा (IRREGULAR GALAXY): सर्पिलाकार, अंडाकार आकृति वाली आकाशगंगाओं से इतर, इस वर्ग में आनेवाली आकाशगंगाओं का आकार नियमित नहीं होता हैं, या यूं कहें कि ये सममितिय आकार वाली नहीं होती हैं। इनमें बहुत कम गैस पाई जाती है। माना जाता है कि ये ब्रह्माण्ड के शुरुआती काल में प्रचुर मात्रा में पाई गई।

उपसंहार: वर्तमान में विभिन्न देशों की अंतरिक्ष एजेंसियां ब्रह्माण्ड की उत्पत्ति व इसकी बृहत्ता, सौर-प्रणाली व इसके पार हमारे आकाशीय पड़ोसियों को समझने एवं ग्रहीय अन्वेषण आदि विषयों के अध्ययन में लगी हुई हैं और इसके लिए कई कार्यक्रम चल रहे हैं। इन विशिष्ट देशों की सूची में अग्रणी नाम, भारत (इसरो), संयुक्त राष्ट्र अमेरिका (अंतरिक्ष एजेंसी नासा, स्पेसएक्स आदि), रूस, जापान, चीन, यूरोपीय स्पेस एजेंसी आदि शामिल है।

इसरो द्वारा संचालित मंगल कक्षित्र मिशन (मॉम), चन्द्र मिशन, भावी मिशन आदित्य एल1 आदि इसी दिशा में उठाये गये कदम हैं। जहां मॉम का मुख्य उद्देश्य मंगल की सतह और उसके वातावरण का अन्वेषण (Exploration) है। वहीं निकटवर्ती समय में इसरो द्वारा आदित्य एल1 मिशन को शुरू किया जा रहा है। यह मिशन सूर्य का अध्ययन करने के लिए भारत का पहला अंतरिक्ष आधारित मिशन होगा। इसको निर्धारित कक्षा में इस प्रकार स्थापित किया जायेगा ताकि यह सूर्य को बिना किसी अवरोध के लगातार देख सके और इस प्रकार, सूर्य के अबाध निरीक्षण को सुनिश्चित किया जा सके। यह सूर्य के प्रकाशमंडल, वर्ण मंडल और सबसे बाहरी परतों (कोरोना) को अवलोकन करेगा।

वर्तमान में इसरो की उदयपुर स्थित सौर वेधशाला सूर्य के बारे में अधिक से अधिक व महत्वपूर्ण जानकारी प्रदान करा रही है। इस वेधशाला से दिन में भी आकाशीय गतिविधियों पर नज़र रखी जा रही है।

वहीं, यू.एस.ए. (नासा), उसके द्वारा संचालित मिशन के माध्यम से मंगल पर जीवन के अस्तित्व, पूर्व में सूक्ष्म जीवन की उपस्थिति आदि के अन्वेषण के क्षेत्र में प्रयत्नशील है। वहीं नासा का पार्कर सोलर प्रोब मिशन सूर्य (जो हमारी आकाशगंगा मंदािकनी का एक तारा है) के बारे में विस्तृत जानकारी मुहैया करवाने हेतु जारी है।

वास्तव में, इस अंतरिक्ष युग में विभिन्न प्रकार के अन्वेषण द्वारा रहस्यमयी प्रश्नों के उत्तर तलाशने के साथ-साथ अन्य



हैदराबाद फ्लाईओवर हाईटेक सिटी

लीला (LILA) लर्न हिंदी थ्रू इंडियन लैंग्वेजेस

रामराज रेड्डी राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

लीला-राजभाषा एवं लीला- प्रवाह राजभाषा विभाग एवं सीडैक द्वारा विकसित मोबाइल ऐप है। जिन्हें गुगल प्ले स्टोर से LILA टाइप करके डाउनलोड किया जा सकता है। इन एप्लिकेशनों द्वारा अंग्रेजी के अलावा 14 भारतीय भाषाओं जैसे असमिया, बोडो, बांग्ला, गजराती, कन्नड, कश्मीरी, मलयालम, मणिपरी, मराठी, नेपाली, उडिया, पंजाबी, तिमल एवं तेलुगु के माध्यम से हिंदी सीखी जा सकती है। सबसे पहले हम लीला-राजभाषा के बारे में जानकारी प्राप्त करेंगे इसके बाद लीला-प्रवाह को भी समझेंगे। इस ऐप को डाउनलोड करेन के बाद चित्र-1 जैसा इंटरफेस दिखाई देगा। यहां आपको पैकेज के अंतर्गत प्रबोध, प्रवीण एवं प्राज्ञ का विकल्प मिलेगा तथा साथ ही मीडियम ऑफ इंस्ट्रक्शन के

रूप में 15 भाषाओं का विकल्प मौजूद है जो बिल्कुल श्-य ज्ञान से प्राज्ञ तक हिंदी

चित्र -1

सीखने के इच्छक है वे प्रबोध के स्तर के साथ प्रारंभ कर सकते हैं। यहाँ हम अंग्रेजी के माध्यम से हिंदी सीखने के संबंध में स्टेप बाइ स्टेप जानकारी प्राप्त करेंगे। प्रबोध एवं भाषा के चयन के बाद आपको इस प्रकार (चित्र-2) का इंटरफेस दिखाई देगा। लीला प्रबोध को पुन: चार वर्गों में विभाजित किया गया है। अल्फाबेटस, लेसन्स, वोकैबुलरी एवं डिक्सनरी (चित्र –2)। अल्फाबेट का चयन करने के बाद ऊपर दिए गए रेखाओं के पास स्पर्श करने पर हमें 15 पाठ मिलेंगे। जिसमें प्रथम पाठ में संपूर्ण हिंदी वर्णमाला का स्क्रीन दिखाई देखा (चित्र -3)। इनमें से प्रत्येक वर्ण में स्पर्श करने पर उसका उच्चारण सुना जा सकता है। किसी भी भाषा को सीखने के लिए उसका वर्णमाला उच्चारण के साथ जानना बहुत जरूरी है। अत: इस ऐप के माध्यम से इसे आसानी से सीखा जा

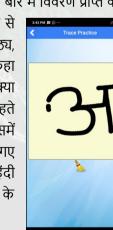
अ आ इ ई उ

अ आ इ ई उ ऋ ए ऐ ओ

> अं अः क ख य उ य छ

> ब्र ज ट ठ द ण त य

ध न प फ


क्ष त्र ज ज अ ज इ ज ज

ब भ म य र व श ष स

सकता है। अगला पाठ वर्णमाला का विवरण है जिसमें सभी वर्णों 13 स्वर वर्ण एवं 39 व्यंजनों का विवरण दिया गया है। तीसरे पाठ में वर्णक्रम दिया गया है। इसके बाद के पाठ में हम व्यंजनों के उच्चारण स्थल के बारे में विवरण प्राप्त करेंगे

जैसे कौन से वर्ण कंठ्य है, कौन से तालव्य, मूर्धन्य, दंत्य, ओष्ठ्य, अंतःस्थ है। महाप्राण किन्हें कहा जाता है तथा किन्हें ऊष्म वर्ण क्या है और किन्हें संयुक्त व्यंजन कहते है आदि। इसके साथ ही उसमें अभ्यास करने हेत पाठ भी दिए गए है। इसके बाद के पाठ में हिंदी

शब्द रचना का वर्णन है जैसे क+ल मिल कर कल शब्द बना है आदि। शब्द रचना के बाद वर्णक्रम के अनुसार शब्द दी गई है।

इ ई उ उ

ऋ ए ऐ ओ ओ

जिस प्रकार A,B,C आदि के आधार पर अंग्रेजी शब्दकोश देखा जाता है ठीक उसी प्रकार हिंदी शब्दकोश देखने के लिए निम्न वर्णक्रम का अनुपालन करना पड़ता है। इसके बाद के पाठ में हम स्वर और उनकी मात्राएं तथा व्यंजनों पर मात्रा लगाने की विधि की जानकारी प्राप्त कर सकते है। इसके बाद के पाठ में हम वर्णों को स्पर्श करके

चित्र –4

सवाद

उन्हें किस तरीके से लिखें इसकी जानकारी विवरण वीडियों के रूप में भी देख सकते है। इस पाठ का नाम ट्रेसिंग है। इसके साथ ही बाद के पाठों में मात्रा को कैसे ट्रेस करें तथा वर्ण के आधे मात्रा को कैसे ट्रेस करें आदि विवरण का वीडियो देख सकते हैं (चित्र-3)। साथ ही इसी ऐप में हम अभ्यास भी कर सकते हैं। आप अपने उंगलियों का प्रयोग करके इसमें लिख सकते हैं। (चित्र-4) पुनः होम में जाकर प्रबोध के अगले वर्ग लेसन्स में जाएंगे। इसमें स्पर्श करने पर हमें निम्न इंटरफेस मिलेगा पाठों पर स्पर्श करने पर पाठ के उपवर्ग देख सकते हैं इसमें नरेटीव (चित्र –5) का चयन करेंगे तो हमें वीडियो पाठ प्राप्त होगा। इस वीडियो में संबंधित पाठ का अनुवाद भी नीचे प्राप्त कर सकते हैं। (चित्र

-6) प्रत्येक पाठ में ऑडियो-वीडियो सुविधा के साथ-साथ चयनित भाषा में अनुवाद प्राप्त करने की सुविधा है। स्क्रीन शॉट इस प्रकार है (चित्र-4)। इसके साथ ही वीडियो देखने के बाद आप उक्त वीडियों में प्रयोग किए गए शब्दों, व्याकरण , शब्द परिवार

आदि विस्तृत विवरण क्रमवार दिया गया है। जैसे व्याकरण के अंतर्गत वीडियो में प्रयोग किए गए संज्ञा, सर्वनाम, क्रिया, क्रिया विशेषण तथा अन्य विवरण। पाठ में परिशिष्ट भी दिया गया है, जिसमें पत्रों के नमूने की जानकारी दी गई है। प्रबोध में कुल 26 वीडियो दिए गए है। प्रत्येक वीडियो में हिंदी सीखने हेतु ज्ञान उपलब्ध कराया गया है। वीडियो देखते वक्त जब भी जरूरत हो सैटिंग में जाकर इच्छित भाषा में परिवर्तित किया जा सकता है।प्रबोध का अगला पाठ वोकैबुलरी है। इसको पुन: चार उपवर्गों में बांटा गया है। जैस- सामान्य शब्द संग्रह, कार्यालयों के नाम, पदनाम तथा मंत्रालयों के नाम लक्ष्य भाषा के अनुवाद सहित दिया गया है। प्रबोध का आखरी वर्ग डिक्सनरी यानी शब्द कोश

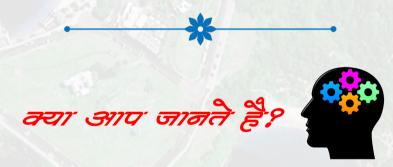
है। (चित्र-7) इसमें अब तक प्रयोग किए गए शब्दों का लक्ष्य भाषा में अर्थ वर्णक्रम में दिया गया है। वर्णों में स्पर्श करने पर

उच्चारण सहित चयनित भाषा का अर्थ प्राप्त होगा। इसमें प्रयोक्ता अपनी आवाज को रिकार्ड भी कर सकते है।

अपना सकता प्रश्निक के प्रति हैं के किया किया किया के आपने के अपने के आपने के अपने के आपने के अपने के आपने के अपने अपने के अप

चित्र –11 चित्र –12

लीला-राजभाषा का अगला पैकेज प्रवीण है। इसका इंटरफेस निम्न प्रकार (चित्र-8) है। इसे दो वर्गों में बांटा गया है। लेसन्स तथा डिक्सनरी है। लेसन्स में प्रबोध के ही भांति 28 वीडियो है (चित्र-9) तथा प्रत्येक वीडियों में ऑडियो-वीडियो सुविधा के साथ चयनित भाषा में अनुवाद प्राप्त करने की सुविधा तथा प्रत्येक पाठ में संबंधित वीडियो का शब्दों, व्याकरण, शब्द परिवार आदि विस्तृत विवरण क्रमवार दिया गया है (चित्र-10)। इसके साथ ही इसके दूसरे वर्ग में प्रबोध के ही भांति वर्णक्रमानुसार शब्दकोश भी है। लीला-राजभाषा आखरी पैकेज प्राज्ञ है। इसका इंटरफेस इस प्रकार है (चित्र-11)। इसमें निम्न चार वर्ग है। लेसन्स में प्रबोध, प्रवीण के ही भांति चयनित भाषा के अनुवाद के साथ आडियो-वीडियो पाठ है। इसके एपेंडिक्स में कुछ कार्यलयीन पत्राचार का नमुना दिया गया है (चित्र-12)। इसमें भी


प्रबोध, प्रवीण के भांति शब्दकोष है। जिसमें वर्णक्रम के अनुसार शब्दों के लक्ष्य भाषा में अर्थ के साथ विवरण दिया गया है। इसके साथ इसमें कामनली यूजड वर्ड्स में वर्ग सरकारी कार्मिकों के लिए काफी उपयोगी है। इसमें आम प्रयोग के पदबंध, कार्यालयीन टिप्पणियां, मंत्रालयों एवं कार्यालयों के नाम, पदनाम तथा पारिभाषिक शब्दावली आदि विवरण वर्णक्रमानुसार दिया गया है। स्क्रीन इन्हें क्रमवार देखा जा सकता है। (चित्र-13)

इसके बाद बाद हम लीला- हिंदी प्रवाह ऐप को देखते है। यह ऐप भी लगभग लीला-राजभाषा की ही तरह है। मात्र इंटरफेस का अंतर है। इसका इंटरफेस निम्न प्रकार (चित्र-14) है।

इसमें प्रबोध, प्रवीण लीला-राजभाषा के भांति ही है तथा प्राज्ञ के स्थान पर प्रवाह है। लीला प्रवाह में अलग-अलग विधाओं के 20 पाठ शामिल किया गया है। इसे भी 15 भाषाओं में उपलब्ध कराया गया है। लाला-राजभाषा की ही तरह प्रत्येक वीडियो में लक्ष्य भाषा का अनुवाद की सुविधा है। प्रत्येक वर्ग के रुचि के अनुरूप पाठों को स्थान दिया गया है। प्रत्येक पाठ हिंदी सीखने के लिए काफी लाभदायक सिद्ध होगी। प्रत्येक पाठ में सम्मिलित शब्दों का अर्थ प्रयोक्ता द्वारा चयनित भाषा में वर्णक्रमानुसार दिए गए हैं।

कुल मिला कर लीला-राजभाषा, लीला-हिंदी प्रवाह दोनों ही ऐप हिंदी सीखने की इच्छा रखने वालों के लिए काफी लाभदायक है। इनका ऑनलाइन वेबवर्जन भी उपलब्ध है, इसका लिंक राजभषा विभाग के वेबसाइट https://rajbhasha.gov.in/ के हिंदी ई-टूल्स से प्राप्त किया जा सकता है। लीला-राजभाषा तथा लीला-हिंदी प्रवाह को कैसे प्रयोग किया जाए इसका स्टेप बाइ स्टेप वीडियो ट्यूटोरियल youtube.com/ramrajsuryavanshi लिंक के हिंदी नामक प्लेलिस्ट में उपलब्ध है।

बेंगलुरु शॉपिंग वेयरहाउस रिलायंस ई-किराना

नैनो प्रौद्योगिकी

मीनाक्षी सक्सेना राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

सूक्ष्म संसार वास्तव में एक बिल्कुल ही अलग और आकर्षक दुनिया है, लेकिन यदि हम सूक्ष्म पैमाने से भी अधिक खोज करें तो उसके परे एक गहरी और अपेक्षाकृत अंजान दुनिया है जहां तक मानव की आंखें नहीं देख सकती हैं। सूक्ष्म पैमाने से परे यानी, एक नैनोस्कोपिक स्तर पर, आज हम जिस औसत स्केल पर काम कर रहे हैं, उससे एक अरब गुना छोटा, यह स्तर परमाणुओं और अणुओं का हेरफेर है।

नैनोप्रौद्योगिकी विज्ञान के क्षेत्र में आज की सबसे बड़ी मांग है। आजकल की व्यस्त जीवन में नैनो टक्नोलॉजी हर जगह पाई जाती है और यह जीवन का एक महत्वपूर्ण हिस्सा बन गई है। देखा जाए तो यह तकनीक पहले भी हमारे बीच ही थी परन्तु इस पर अधिक शोध न होने के कारण यह सुसाध्य नहीं हो पाई थी जैसी कि आज है। अब विज्ञान इतना उन्नत हो गया है कि नए प्रकार के शोध हो रहे हैं और इस तकनीक को एक नई दिशा मिली है। ऐसा कहा जा रहा है कि भविष्य में हर तकनीक का आधार नैनो होगा। वर्तमान में भी हमारी रोजमर्रा की जरूरत की चीजों से लेकर मेडिसिन और बड़ी—बड़ी मशीनरी में नैनो टक्नोलॉजी का उपयोग किया जा रहा है।

नैनो एक ग्रीक शब्द है, जिसका शाब्दिक अर्थ है सूक्ष्म, छोटा या बौना और नैनो ऐसे पदार्थ है जो अति सूक्ष्म आकार वाले तत्वों से बने होते हैं। यह व्यवहारिक विज्ञान के क्षेत्र में 1 से 100 नैनो (अर्थात 10°m) स्केल में प्रयुक्त और अध्ययन की जाने वाली सभी तकनीकों और संबंधित विज्ञान का समूह है। छोटे आकार, बेहतर क्षमता और टिकाऊपन के कारण मेडिकल व बायो इंजीनियरिंग तथा अंतरिक्ष विज्ञान में तेजी से अपने पैर पसार रही है। अर्थात यह प्रौद्योगिकी वह अप्लाइड साइंस है

जिसमें 100 नैनोमीटर से छोटे पार्टिकल्स पर भी काम किया जाता है। अणुओं व परमाणुओं से सुसिज्जित यह टेक्नोलॉजी बेहद जटिल विषयों को आपस में जोड़ती है। इसकी मदद से जैव विज्ञान, चिकित्सा विज्ञान, इलैक्ट्रॉनिकस आदि में क्रांतिकारी बदलाव आया है। इस प्रौद्योगिकी में मशीनों का जीवन बढ़ जाता है क्योंकि इंजन में कम घर्षण होता है जिससे ईंधन की खपत भी कम होती है। ऐसा कहना गलत नहीं होगा कि नैनो टक्नोलॉजी विज्ञान का वह रूप है जिसके कारण मोबाइल नाखून जितना छोटा या ऐसी मशीनें जो शरीर के अंदर छोटे-छोटे कणों में जाकर ऑपरेशन कर सकें।

21वीं सदी नैनो सदी के रूप में जानी जाएगी। जहां वस्तुओं का आकार छोटा और मजबूत बनाने की होड़ सी मची हुई है। विभिन्न क्षेत्रों में नैनो तकनीकी विकसित करने के लिए दुनिया भर में बड़े पैमाने पर शोध हो रहे हैं। अति सूक्ष्म आकार, बेजोड़ मजबूती और टिकाऊपन के कारण इलैक्ट्रॉनिक्स, मेडिसिन, ऑटो, बासोसाइंस, पेट्रोलियम, फॉरनिसक और डिफेंस जैसे तमाम क्षेत्रों में नैनो टक्नोलॉजी की असीम संभावनाएं बन रही हैं।

उद्भव: नैनोसाइंस के पीछे विचार और अवधारणाएं 29 दिसंबर 1959 को कैलिफोर्निया इंस्टीट्यूट ऑफ टेकन्लॉजी (Cal Tech) में एक अमेरिकी भौतिक सोसाइटी की बैठक में भौतिकशास्त्री रिचर्ड फेनमैन ने अपने एक व्याख्यान में कहा था "There is plenty of room at the Bottom" और यही आगे चलकर नैनो विज्ञान का आधार बना। उन्होंने एक ऐसी प्रक्रिया का वर्णन किया जिसमें वैज्ञानिक अलग-अलग परमाणुओं और अणुओं को हरफेर करने और

नियंत्रित करने में सक्षम होंगे। इस महान् वैज्ञानिक ने भावी संसार की नई कल्पना बनाई लेकिन तब उनके पास इसे साकार रूप देने के लिए पर्याप्त साधन व सुविधाएं मौजूद नहं थीं। उनके लिए अणु-परमाणुओं से खेलना उतना आसान नहीं थे। एक दशक बाद आधुनिक मशीनों के अपने अन्वेषण में प्रोफेसर तिनगुची ने नैनोटेक्नोलॉजी शब्द का प्रयोग किया था। एक ऐसी तकनीक जिसके बारे में बड़े-बड़े प्रसिद्ध नेता भी अपने भाषण में उपयोग करते हैं।

नैनो तकनीक में दो प्रमुख पद्धितयों को अपनाया गया है। पहली पद्धित वह है जिसमें पदार्थ और उपकरण आण्विक घटकों से बनाए जाते हैं जो अणुओं के आणुविक अभिज्ञान के द्वारा स्व-एकत्रण के रासायिनक सिद्धांतों पर आधारित है। जो अणुओं के आणुविक अभिज्ञान द्वारा स्व-एकत्रण के रासायिनक सिद्धांतों पर आधारित है। दूसरी पद्धित में नैनो वस्तुओं का निर्माण बिना अणु-सतह पर नियंत्रण के बड़े तत्वों से किया जाता है। नैनो तकनीक में आवेग माध्यम और कोलाइडल ज्ञान पर नवीकृत रूचि और नयी पीढी के विश्लेषणात्मक उपकरण जैसे कि परमाण्विक बल सूक्ष्मदर्शी (एएफएम) और अवलोकन टनलिंग सूक्ष्मदर्शी यंत्र (एसटीएम)। इन यंत्रों के साथ इलेक्ट्रॉन किरण अश्मलेखन और आणविक किरण एपिटैक्सी जैसी विधिओं के प्रयोग से नैनो-विन्यासों के प्रकलन से इस विज्ञान में उन्नित हुई।

मूल सिद्धांत: एक नैनोमीटर मीटर का सौ करोड़वां भाग है। जैसे—जैसे हम एक भौतिक व्यवस्था को छोटा करते जाते हैं, हमें नये भौतिक प्रतिभासों का पता चलता है। इनमें शामिल हैं सांख्यिकीय यांत्रिकी और प्रमात्रा यांत्रिकी। नैनो स्केल में तल-क्षेत्रफल से घनफल के अनुपात के बढ़ जाने के कारण यांत्रिक, उष्ण, प्रकाशिक तथा उत्प्रेरक जैसे भौतिक गुणधर्मों का प्रभाव बदल जाता है। नवीन यांत्रिक गुणधर्मों में अनुसंधान नैनोमेकैनिक्स के तहत हो रहा है। नैनो पदार्थों के उत्प्रेरक बरताव का जैव-पदार्थों के साथ अंतःक्रिया के जोखिम का अध्ययन क महत्वपूर्ण विषय है। नैनो पदार्थों के इन गुणधर्मों के कई अनोखे अनुप्रयोग हैं। उदाहरण के लिए गैर पारदर्शी पदार्थ का पारदर्शी होना (तांबा), अचर पदार्थों का उत्प्रेरक बनना (प्लैटिनम, सोना), गैर दहनशील का दहरशील पदार्थ बनना (एल्युमिनियम), ठोस पदार्थ का सामान्य तापमान में तरल होना (सोना), या कुचालक पदार्थ का चालक होना (सिलिकॉन)।

आधुनिक संश्लेषिक रसायन शास्त्र आज वहां तक पहुंच चुका है कि छोटे अणुओं से बड़े ढांचे की संरचना की जा सकती है। आज इन पद्धतियों से अनेकों प्रकार के उपयोगी रसायन बनाए जा रहे हैं जैसे कि दवाएं और वाणिज्यिक उपयोगी बहुलक। एक-एक कर अणों को पुनर्निर्धारित आकारों में सहेज कर विशाल अणुकणिकाओं की संरचना से रसायन शास्त्र या आण्विक स्वयं संयोजन एक कदम आगे की ओर ले जाता है।

अनुप्रयोग: हांलािक इस प्रौद्योगिकी का उपयोग मानव जीवन के हर क्षेत्र में फैल रहा है लेिकन इसके अनुप्रयोगों का अर्थ है नैनोटेक उत्पादों का व्यावसायीकरण, हालांिक अधिकांश अनुप्रयोग निष्क्रिय नैनोमेट्रिक्स के थोक उपयोग तक सीिमत हैं। भावी दशकों में, नैनो टेक्नोलॉजी के अनुप्रयोगों में बहुत अधिक क्षमता वाले कंप्यूटर, विभिन्न प्रकार की सिक्रय सामग्री और सेलुलर-स्केल बायोमेडिकल डिवाइस शामिल होंगे। इस प्रौद्योगिकी के कुछ अनुप्रयोग नीचे दिए गए हैं।

1. नैनो तकनीक ऊर्जा में: राइस विश्वविद्यालय के डॉ. वेडम्स के अनुसार "अगले 50 वर्षों में ऊर्जा मानवता के सामने सबसे अधिक दबाव वाली समस्या होगी और नैनो टक्नोलॉजी में इस मुद्दे को हल करने की क्षमता है"। विज्ञान और इंजीनियरिंग के क्षेत्रों में लोग पहले से ही प्रयोक्ता उत्पादों के विकास के लिए नैनो तकनीक के उपयोग के तरीके विकसित करना शुरू कर चुके हैं। इन उत्पादों के डिजाइन से पहले से देखे गए लाभ प्रकाश और हीटिंग की बढ़ी हुई दक्षता, विद्युत भंडारण क्षमता में बढ़ोत्तरी और ऊर्जा के उपयोग से प्रदूषण की मात्रा में कमी होती है। नैनोफैब्रिकेशन, नैनोस्केल पर उपकरणों को डिजाइन करने और बनाने की प्रक्रिया नैनो-

ऊर्जा से संबंधित एक महत्वपूर्ण उप-क्षेत्र है। यह 100nm यानि 100 नैनोमीटर से छोटे उपकरण बनाने की क्षमता है। यह तकनीक ऊर्जा को पकड़ने, संग्रहीत करने और स्थानांतिरत करने के नए तरीकों के विकास के लिए कई दरवाजे खोलती है। कुछ अन्य उदाहरण लिथियम-सल्फर आधारित उच्च प्रदर्शन बैटिरयों, सिलिकॉन -आधारित नैनो अर्धचालक, सौर कोशिकाओं में नैनोमीटर, नैनोपार्टिकल फ्यूल एडिटिव्स हैं। नैनो तकनीक से उत्पन्न ऊर्जा के उपयोग का एक दो यह है कि पर्यावरण पर नैनोकणों का प्रभाव पड़ता है। ईंधन में सेरियम ऑक्साइड नैनोपार्टिकल एडिटिव्स के साथ पर्यावरण में विषाक्त कणों को बढ़ा सकते हैं। इस बात का पता लगाना आवश्यक है कि क्या कृत्रिम नैनोकणों के अलावा ईंधन में दहन के कारण जहरीले कण उत्सर्जन की शुद्ध मात्रा घटती है या नहीं।

- 2. नैनोबायोटेक्नोलॉजी: नैनोबायोटेक्नोलॉजी जीव विज्ञान का ही एक हिस्सा है। यह हाल ही में उभरा ऐसा विषय है जो विभिन्न संबंधित तकनीकों के लिए बेहतरीन काम करता है। जीव विज्ञान के लिए यह तकनीकी दृष्टिकोण वैज्ञानिकों को जैविक अनुसंधान के लिए इस्तेमाल की जाने वाली प्रणालियों की कल्पना करने और बनाने की अनुमित देता है। जैविक रूप से प्रेरित नैनो तकनीक जैविक प्रणालियों का उपयोग करती है क्योंकि अभी तक इसमें आगे और शोध व अध्ययन की आवश्यकता है।
- 3. पर्यावरणीय स्थिरता को बढ़ाने के लिए नैनो प्रौद्योगकी: इस दिशा में नैनो तकनीक काफी उपयोगी हो सकती है जिसका अर्थ है स्थिरता को बढ़ाने के लिए नैनो प्रौद्योगिकी के उत्पादों का उपयोग। इसमें ग्रीन नैनो-उत्पाद बनाना और स्थिरता के समर्थन में नैनो-उत्पादों का उपयोग करना शामिल है। ग्रीन नैनोटेक्नोलॉजी को स्वच्छ प्रौद्योगिकियों के विकास के रूप में वर्णित किया गया है अर्थात नैनो उत्पादों के निर्माण और उपयोग से जुड़े संभावित पर्यावरणीय और मानव स्वास्थ्य जोखिमों को कम करना और नए नैनो उत्पादों के साथ मौजूदा उत्पादों के प्रतिस्थापन को प्रोत्साहित करना जो कि पूरे जीवन चक्र पर्यावरण के अनुकूल रहे।
- 4. उद्योगों में नैनो प्रौद्योगिकी: ऐसा अनुमान है कि नैनो प्रौद्योगिकी इस सदी में प्रौद्योगिकी और व्यवसाय में मुख्य स्थान निभाएगी और समाज के सभी पहलुओं पर महत्वपूर्ण प्रभाव के साथ बुद्धिमान प्रणालियों और नवनीत उत्पादन के तरीकों को भी सबके सामने लाएगी। यह प्रौद्योगिकी प्रयोक्ता वस्तुओं के क्षेत्र को प्रभावित कर रही है, इसमें कई तरह के आइटम और उत्पाद शामिल हैं जिनमें नैनो मैटिरिल्स शामिल हैं और जो लोग इन उत्पादों का उपयोग करते हैं वे भी नहीं जानते हैं इसमें नैनो पार्टिकल्स होते हैं। कुछ उदाहरण जैसे कार का बंपर हल्का बन गया है, सनस्क्रीन अधिक विकीरण प्रतिरोधी है, सिंथैटिक हिंचुयां अधिक मजबूत हैं, सेल फोन का स्क्रीन हल्का हो गया है। विभिन्न खेलों के लिए खास गेंदें बनायी जाती हैं। स्मार्ट फोन ही नहीं कई और वस्तुओं का भार भी कम हो गया है। उद्योंगों में और भी कई संभावित अनुप्रयोग हैं।
- 5. नैनो इलैक्ट्रॉनिक्स: इसका आशय इलैक्ट्रॉनिक उपकरणों में नैनो प्रौद्योगिकी के उपयोग से है। इस शब्द में विभिन्न प्रकार के उपकरणों और सामग्रियों को शामिल किया गया है जिनमें आम विशेषता यह है कि वे इतने छोटे हैं कि अंतर परमाणु संपर्क और कांटम यांत्रिक गुणों का बड़े पैमाने पर अध्ययन करने की आवश्यकता है। इनमें से कुछ उम्मीदवारों में शामिल हैं। हाइब्रिड़ आण्विक / अर्धचालक इलैक्ट्रॉनिक्स, या उन्नत आण्विक इलैक्ट्रॉनिक्स शामिल हैं।

नैनो तकनीक कई नई सामग्रियों और उपकरणों का निर्माण करने में सक्षम हो सकती है जिसमें अनुप्रयोगों की एक विशाल श्रृंखला शामिल है। दूसरी ओर नैनो प्रौद्योगिकी किसी भी नई तकनीक के समान ही कई मुद्दों को उठाती है जिसमें नैनोमैटेरियल्स के विषाक्तता पर पर्यावरणीय प्रभाव और वैश्विक अर्थशात्र पर उनके संभावित प्रभावों के साथ - साथ विभिन्न प्रलय के दिनों के बारे में अटकलें शामिल हैं। इन चिंताओं ने एक बहस को जन्म दिया है कि क्या नैनो तकनीक के विशेष विनियमन को बाजार में आगे बढ़ाने की अनुमित दी गई है। वर्तमान में वैज्ञानिक नैनो प्रौद्योगिकी के भावी प्रभावों पर बहस कर रहे हैं।

डॉ. एन अपर्णा राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

सुदूर संवेदन तकनीक कम समय में लोगों तक सटीक सूचना पहुंचाने में उत्तरोत्तर प्रगित करती जा रही है। इसके साथ ही भारतीय अंतिरक्ष कार्यक्रम में जुड़ते उपग्रहों की दक्षता भी उनके द्वारा उपलब्ध कराए गए उत्पादों की गुणवत्ता से वैश्विक स्तर पर अपनी अलग पहचान बनाता जा रहा है। किसी भी आपदा के समय सबसे महत्वपूर्ण है घटनास्थल से जुड़ी तस्वीरें एवं सूचनाएं जो राहत एवं बचाव कार्यों को गित प्रदान कर सकती है। हांलािक विविध प्रकार के आंकड़े उत्पाद उपलब्ध हैं जिनका आपदाग्रस्त क्षेत्र में त्विरत सहायता के लिए उपयोग किया जा सकता है या फिर निकट वास्तिवक काल में आंकड़े अर्जित कर पूर्वानुमान लगाते हुए भी आने वाली आपदा से लोगों को बचाया जा सकता है।

भारत में उच्च विभेदन आकड़ों की खपत और जरूरत बहुत बढ़ गई है क्योंकि जहां भी निगरानी या मानचित्रण की आवश्यकता है वहां उच्च विभेदन युक्त राष्ट्रीय उत्पाद मांगे जाते है। इसी के तहत इसरो द्वारा कार्टीसैट-3 प्रेक्षेपित किया गया था। कार्टीसैट -3 को इसरो के ध्रवीय उपग्रह प्रक्षेपण यान के द्वारा 27, नवंबर 2019 को सुबह 9:28 मिनट पर श्रीहरिकोटा (एसडीएससी शार) से प्रक्षेपित किया गया था।

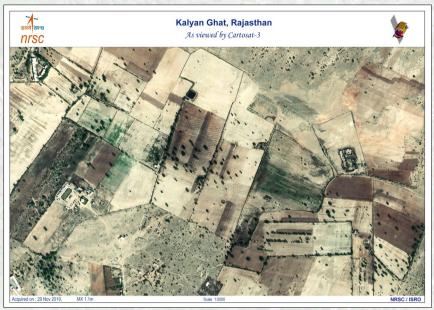
जैसा कि हमने पहले बताया कि उच्च विभेदन के आकड़ों की खपत बहुत ज्यादा है इसलिए इससे पहले इसरो ने कार्टीसैट 2 ई का प्रक्षेपण किया था जिसका विभेदन क्षमता पैन्क्रोमैटिक (सर्ववर्णीय) पैन में 65 से.मी. और बहुस्पैक्ट्रमी में 1.6 m है । कार्टीसैट -3 इससे भी अधिक विभेदन के आंकड़े अर्जित करने की क्षमता रखता है। यह पैन 0.28 m और Mx 1.12m के आंकड़े ग्रहण कर सकता है। इसका प्रमार्ज 17 कि.मी. और यह 45° डिग्री और 26° डिग्री पथ के साथ एवं उसके आरपार कैमरा घुमाने की क्षमता रखता है।

जैसे ही आंकड़ो का विभेदन बढ़ता है आंकड़ा दर भी बढ़ जाती है। इन आंकड़ा दरों को संभालने के लिए नए तरीके से एक्स बैंड तथा केए बैंड संचरण एवं अभिग्रहण का आरंभ किया गया।

एक्स बैंड आंकड़ा दर 960 एमबीपीएस है; केए बैंड आंकड़ा दर 2880 एमबीपीएस है; कार्टौंसैट-3 के कुछ प्रमुख विशेषताएं है: उपग्रह मात्रा (किलो) 1625 कि.ग्रा.; कक्षा कक्ष: ध्रुवीय सूर्य समकालिक (एसएसओ) (polar sun synchronous (sso); कक्षा की लंबाई: 505 किमी; कक्षा नित: 97.62day; भूमध्य रेखा पार करने का स्थानीय समय: 9:30 पूर्वाह्न कार्टौंसैट-3 का पैन 0.28m विभेदन 0.45-0.9 gm विशेष बैंड विस्तार में कर सकता है। इसका प्रमात्रीकरण (quantization) II bits और यह 24 संसूचकों के साथ करा करता है। इसका एमएक्स भी इन्ही सारी विनिर्देशों के साथ काम करता है। लेकिन इसके 4 विशेष बैंड है।

बी1- 0.45-0.52 gm; बी2-0.52-0.59 gm; बी3-0.62-0.68 gm; बी4-0.77-0.86 gm कार्टौसैट-3 का उच्च आंकड़ा दरों के आंकड़े ग्रहण करने के राष्ट्रीय सुदूर संवेदन केंद्र ने अपने एंटेना में नए केए बैंड एंटेना में लगाया गया ताकि हम अधिक से अधिक आंकडों का ग्रहण कर सकें।

इसके अलावा एक और केए बैंड एंटेना शादनगर में भी लगाया जा रहा है। कार्टीसैट-3 एक कक्षा में एक साथ 4200 कि.मी. की लंबाई तक आंकड़े अर्जन कर सकता है लेकिन क्योंकि ये उच्च विभेदन के आंकड़े है, हर एक मिनट के आंकड़ों को डाउन लिंक के लिए 3 मिनट की आवश्यकता है। इसलिए केए बैंड के एंटेना का होना बहुत आवश्यक है।

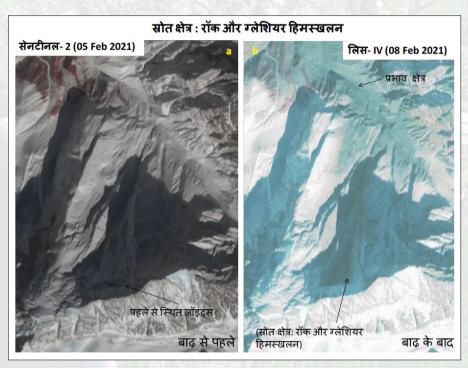

इस उपग्रह के आंकड़ें मानचित्रण अनुप्रयोग, परिशुद्धता खेती, फसल बीमा, कराधान, आपदा निगरानी एवं कई अन्य सूक्ष्म स्तर को योजना के काम आएगा।

एनआरएससी ने नवंबर 2020 में आंकड़े उपभोक्ताओं को सूचित किया।

इस उपग्रह द्वारा लिए गए कुछ चित्र नीचे दिखाए गए हैं। कल्याण घाट, जैसलमेर का एक छोटा सा गांव है जहाँ सौलर पैनल और वाटर ट्रीटमेंट प्लांट दर्शाए गए है।

चमोली, जिला उत्तराखंड में बाढ़ की त्रासदी

तापस रंजन मार्था, निर्मला जैन, प्रियोम रॉय, के विनोद कुमार राष्ट्रीय सुदूर संवेदन केन्द्र, हैदराबाद

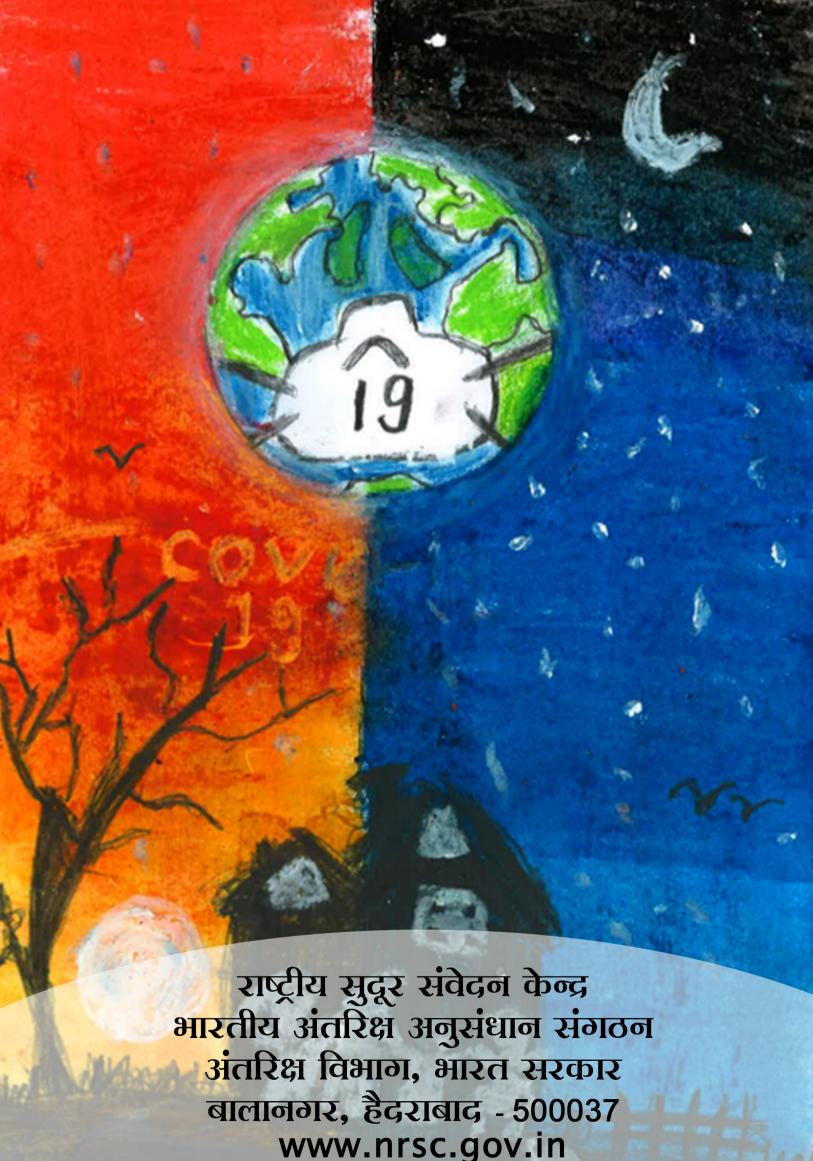

चमोली भारतीय उत्तरांचल का एक जिला है। बर्फ से ढके पर्वतों के बीच स्थित यह जगह काफी खूबसूरत है। चमोली अलकनंदा नदी के समीप बद्रीनाथ मार्ग पर स्थित है। यह प्रमुख धार्मिक स्थलों में से एक है जहां काफी संख्या में पर्यटक आते हैं। चमोली की प्राकृतिक सुदंरता पर्यटकों को अपनी ओर आकर्षित करती है। पूरे चमोली जिले में कई ऐसे मंदिर हैं जो हजारों की संख्या में श्रद्धालुओं को अपनी ओर आकर्षित करते हैं। चमोली में ऐसे कई बड़े और छोटे मंदिर हैं तथा ऐसे कई स्थान हैं जो रहने की सुविधा प्रदान करते हैं। इस जगह को चाती कहा जाता है। चाती एक प्रकार की झोपड़ी है जो अलकनंदा नदी के तट पर स्थित है। यह यहां की प्रसिद्ध नदी है जो तिब्बत की जसकर श्रेणी से निकलती है।

07 फरवरी 2021 को चमोली में जो आपदा आई उससे सारा संसार कांप उठा। किसी भी त्रासदी के समय भूगितकी एवं भू-जोखिम प्रभाग, (जियोडायनामिक्स एंड जियोहाजार्ड्स डिविजन) भू-विज्ञान समूह, सुदूर संवेदन अनुप्रयोग, राष्ट्रीय सुदूर संवेदन केन्द्र, भारतीय अंतिरक्ष अनुसंधान संगठन, अंतिरक्ष विभाग, भारत सरकार, हैदराबाद तुरंत ही फरवरी 2021 की इस घटना के साथ ही सिक्रय हो गया।

उत्तराखंड के जिलों में भूस्खलन और अन्य प्राकृतिक घटनाएं जैसे कि अत्यधिक बाढ़, बादल फटना और ग्लेशियल झील का प्रकोप आम हैं। वर्षा, बर्फ गिरना और भूकंप इन घटनाओं के लिए कारण हैं। ऋषिगंगा और धौलीगंगा इस क्षेत्र की प्रमुख निदयाँ हैं। ऋषिगंगा नदी रैनी गांव के पास धौलीगंगा नदी में मिलती है। धौलीगंगा आगे जोशीमठ में अलकनंदा नदी में मिलती है। 07 फरवरी 2021 को लगभग 10:30 बजे ऋषिगंगा और धौलीगंगा घाटी में पहाड़ और ग्लेशियर के टूटने के कारण बाढ़ दुर्घटना देखी गई। इस दुर्घटना का मुख्य स्थान समुद्र तल से लगभग 5474 मी ऊंचाई पर है। यह स्थान खड़ी ढलानों, फ्रैक्चर और जॉइंट्स से घिरा हुआ है। बाढ़ के आस-पास के क्षेत्र मेंअत्यधिक बीहड़ स्थलाकृति, खड़ी पहाड़ी घाटियाँ और हिमाच्छादित इलाक़े शामिल हैं। यह बाढ़ रौंथी नाले से शुरू हुई जो ऋषिगंगा नदी को मिलती है। घटना के दिन, दुर्घटना की तीव्रता पहाड़ों की खड़ी ढलान के कारण बढ़ी थी। दुर्घटना के दौरान, रौंथी नाला और ऋषिगंगा नदी ने पत्थरों और कीचड़ के मलबे का बड़ा हिस्सा अपने साथ बहा कर धौलीगंगा में लाया, जिससे तपोवन और रैनी, क्षेत्रों के निकट बसे ऋषिगंगा और तपोवन हाइड्रो इलेक्ट्रिक पावर प्रोजेक्ट्स को, बस्तियों, सड़कों और पुलों को भारी मात्रा में नुकसान पहुंचा। समाचारों के माध्यम से पता चला की इस दुर्घटना से कई लोगो ने अपनी जान गवाई, 60 लोग मारे गए हैं और 144 लोग लापता थे। इस दुर्घटना की वजह से ऋषिगंगा नदी के ऊपरी हिस्से में प्राकृतिक तालाब बना और कुछ समय के बाद वह नैसर्गिक तरीके से बहने लगी। जिससे भविष्य में होने वाले नुकसान का कुछ हद तक खतरा कम हआ।

जिस ऊंचाई पर यह दुर्घटना शुरू हुई, उस जगह पर तुरंत पहुंचना संभव नहीं है। प्रभावित क्षेत्र में, इस आपदा का जियोलॉजिकल कारण समझने के लिए, उपग्रह डेटा (कोम्पसैट -3 ए (20 सितंबर 2020), सेनटीनल- २ (05 फरवरी 2021), लिस-IV (08 फरवरी 2021)) तथा प्लीएडेस स्टीरियोस्कोपिक (10 February 2021) का उपयोग किया गया। रॉक और ग्लेशियर के हिमस्खलन की जगह और उसके प्रवाह में आये पत्थरो, धूल और कीचड़ के बने मलबे का अध्ययन किया गया। चित्र 1) a) स्रोत क्षेत्र में दरार दिखने वाली पूर्व-घटना सेनटीनल- 21 b) रॉक और ग्लेशियर हिमस्खलन का स्थान दिखाते हुए घटना के बाद लिस-IV उपग्रह डेटा दिखाया गया है। फरवरी की शुरुआत में भारी बर्फबारी और तापमान में भिन्नता के कारण चट्टानें कमजोर होती है। रॉक और ग्लेशियर के हिमस्खलन से आई बाढ़ का यह कारण हो सकता है (स्रोत: इसरो रिपोर्ट)। ग्लेशियर क्षेत्र में आने वाले स्थानों के लिए भविष्य में जरुरी उपाय

किए जाने चाहिए। हिमालयी भूभाग में चट्टान और हिमनद हिमस्खलन क्षेत्रों की पहचान की आवश्यकता है। भविष्य में इसी प्रकार की विफलता का आकलन करने के लिए पहाड़ों में बड़ी दरार की निगरानी भी आवश्यक है। हाइड्रो इलेक्ट्रिक पावर प्रोजेक्ट, रोड, रेल लाइन, इनको बनाने से पहले उस जगह की भूवैज्ञानिक और ग्लेशियोलॉजिकल जांच होनी चाहिए।



चित्र 1: a) स्रोत क्षेत्र में दरार दिखाने वाली पूर्व-घटना सेनटीनल- 2। b) रॉक और ग्लेशियर हिमस्खलन का स्थान दिखाते हुए पोस्ट-इवेंट लिस- IV

चित्र 2: लीएडेस स्टीरियोस्कोपिक उपग्रह डेटा, बाढ़ के बाद जहां से पहाड़ गिरा उस जगह का चित्र दिखाते हुए।

